GAVO DaCHS operator's guide

Author: Markus Demleitner
Email: gavoQari.uni-heidelberg.de
Date: 2016-03-16

Contents
Starting and stopping the server 1
Publication 2
Registry Matters 3
Defining Basic Metadata 3
Registering DaCHS-external Services 5
Registering Web Interfaces (And More) 7
Simple OAl operation 7
Making the VO see your Registry 8
Adapting DaCHS for Your Site 8
Customisation Hooks 9
Operator CSS 9
XSL configuration L 10
Userconfig RD 10
Simple Web Resources 11
Templates 12
Overridden System RDs, 12
Other documents 12
The Vanity Map 12

mailto:gavo@ari.uni-heidelberg.de

Walkthrough

Reference

Admin Web Interfaces
robots.txt

Admin CLI Interfaces

Configuration Settings

The general Section . .
The web Section
The db Section

The profiles Section . .

Section [general]
Section [adql]
Section [async]
Section [db]

Section [ivoa]

Magic Section [profiles]

Section [ui]

Section [web]

Managing Runtime Resources

Admin Interfaces

13
14
14
14
15
16
16
16
18
18
19
19
20
20
20

21

22

Upgrading 23

Upgrading DaCHS 23
Upgrading Installations from Debian Package 23
Upgrading Installations from SVN 24

Upgrading Postgres 24

This document details the configuration and operation of the GAVO DaCHS
server. For information on installing the software, please refer to the installation
guide, to learn how to import data, see the tutorial. For an overview of the
available documentation, see DaCHS documentation

Starting and stopping the server

The gavo serve subcommand is used to control the server. gavo serve start
starts the server, changes the user to what is specified in the [web] user config
item if it has the privileges to do so (that's "gavo" by default; you will already
have created that user if you followed the installation instructions) and detaches
from the terminal.

Analoguosly, gavo serve stop stops the server. To reload some of the server con-
figuration (e.g., the resource descriptors, the vanity map, and the /etc/gavo.rc
and ~/.gavorc files), run gavo serve reload. This does not reload database
profiles, and not all configuration items are applied (e.g., changes to the bind
address and port only take effect after a restart). If you remove a configuration
item entriely, their built-in defaults do not get restored on reload either.

Finally, gavo serve restart restarts the server. The start, stop, reload, and
restart operations generally should be run as root; you can run them as the
server user (by default, gavo), too, as long as the server doesn't try to bind to
a privileged (lower than 1025).

All this can and should be packed into a startup script or the equivalent en-
tity for the init systme of your choice. Our Debian package provides a Sys-
tem V-style init script; it is available from http://svn.ari.uni-heidelberg.de/
svn/debian-package/gavodachs/trunk/debian/gavodachs-server.dachs.init and
should be installed to /etc/init.d/dachs (of course, if you installed the Debian
package, the system has already done this for you).

For development work or to see what is going on, you can run gavo serve debug;
this does not detach and does not change users.

http://docs.g-vo.org/DaCHS/install.html
http://docs.g-vo.org/DaCHS/install.html
http://docs.g-vo.org/DaCHS/tutorial.html
http://docs.g-vo.org/DaCHS
http://svn.ari.uni-heidelberg.de/svn/debian-package/gavodachs/trunk/debian/gavodachs-server.dachs.init
http://svn.ari.uni-heidelberg.de/svn/debian-package/gavodachs/trunk/debian/gavodachs-server.dachs.init

Publication

To "publish" a resource — which means include it either on your site’s home
page or in what you report to the VO registry —, add a publish element to a
service element or a register element to data or table elements. Both of these
let you specify the sets the resources shall be published to. Unless you have
specific application, only two sets are relevant: ivo_managed for publishing to the
VO (see Registry Matters, and 1ocal for publishing to your data center’s service
roster. Other sets can be introduced and used for, e.g., specific sub-rosters.

The publish element needs, in addition, a render attribute, giving a comma-
separated list of renderers the publication is for. The various renderers are
translated into capability element in the VO resource records. For example, a
typical pattern could be:

<publish render="scs.xml" sets="ivo_managed"/>

<publish render="form" sets="local,ivo_managed"/>

This generates a capability each for the simple cone search and a browser-based
interface; the browser-based interface is, in addition, listed in the local service
roster.

You can also publish tables; for those, the notion of renderers make no sense,
so the publish element doesn’t have that. Instead, you could define services
that serve that data. For many cases, you don't even need to do this, since for
tables that have adq1="True", the local TAP service is automatically considered
to be a service for that data.

So, to publish an ADQL-queriable table to the VO for querying via TAP, just
write:

<publish/>

within the table element. A table containing, e.g., data that's queried in a SIAP
service in a different RD, would require something like:

<publish service="other/rd#siapsvc/>

Once you have done this, run gavo pub <rdid>. This causes all publishable items
in the RD to be published. It also unpublishes everything that was published
through the RD before and is no longer published. If the serverURL config item
on the machine running gavo pub is pointing to the actual running server, the
latter will automatically be made aware of these changes. Otherwise, you need
to prod the server as discussed in Managing Runtime Resources.

Registry Matters

As explained in the tutorial chapter on the registry, you must provide enough
data to allow the VO to tell who you are before the VO registry can usefully
include your registry records.

Once that's done, you can add the publishing registry included in DaCHS to
the list of registries harvested by VO full registries.

This chapter tries to guide you through this process.
Defining Basic Metadata

The first step is to define your authority (i.e., something like org.g-vo.dc) in
your config (/etc/gavo.rc), in the [ivoalauthority item. Please make sure that
the authority is not already taken by someone else; you have probably fulfilled
your due diligence if you've run an authority query against the registry and did
not find a match. Using your DNS name is not a bad idea. Please don’t repeat
our (the GAVO DC's) mistake and invert the sequence of particles in your DNS
name. Also, this is just the name, there is no ivo:// or other decoration.

Then, add metadata about yourself in GAVO_ROOT/etc/defaultmeta.txt. It is a file
in the meta stream format; basically it's lines of <key>: <value>.

In defaultmeta.txt, you must give basic information on your authority and some
fallback for services (the defaults all make no sense at all and should never
escape to the VO registry):

e publisher — A short, human-readable name for you

e publisherID — An IVOA id for yourself; set this to ivo://<authority> /org
unless you know what you are doing

e contact.name — A human-readable name for some entity people should
write to. This is not necessarily different from publisher, but ideally people
can write "Dear <contact.name>" in their mails.

e contact.address — A contact address for surface mail

e contact.email — An email address. It will be published on web pages, so
there probably should be some kind of spam filter in front of it.

e contact.telephone — A telephone number people can call if things really
look bad.

e creator.name — A name to use when you give no creator in your resource
descriptors. Could be some error sentinel ("we foget to give credit, please
complain") or just contact.name if you produce resources yourself.

tutorial.html#the-registry-interface
http://dc.zah.uni-heidelberg.de/__system__/adql/query/form?query=select%20ivoid%20from%20rr.resource%20where%20res_type%3D%27vg%3Aauthority%27%20and%20ivoid%3D%27ivo%3A%2F%2Forg.gavo.dc%27
ref.html#meta-stream-format

e creator.logo — A URL for a logo to use when none is given in the resource
metadata. Use a small PNG here.

e site.description — A description of your site (i.e., "data center")
Example: The GAVO data center provides VO publication services to
all interested parties on behalf of the German Astrophysical Virtual
Observatory. (use backslashes an the end of the lines to break long lines).

Then, fill out the metadata for the system registry resources in your userconfig
RD. This is the stuff in the registry-interfacerecords stream (which you can
copy from //userconfig if it's not yet in your etc/userconfig.rd. Fill things out;
in particular everything where there's a \\metaString expansion. This still is
filled from defaultmeta.txt, but as we want to get rid of that file on the long
run, just enter the text as you see fit.

In authority, change in particular

e creationDate — A UTC datetime (with trailing Z); technically, it should
be the date the resource record is created, but realistically, just use
"now" at the time your're writing the defaultmeta.txt. Example:
2007-12-19T12:00: 00Z.

e title — A human-readable descriptor of what the authority corresponds to.
Example: The Utopia Observatory Data Center

e description — A sentence or two on what the authority you are using
means. This could be the same as site.description if all you're claiming
authority for is that; if you're claiming authority for your institute or or-
ganisation, this obviously should be different. Example: The Data Center
at the Observatory of Utopia manages lots of substantial data sets
created by the bright scientists all over the world (use backslashes an
the end of the lines to break long lines).

e shortName — a short (about 16 chars) identifier for your authority. Exam-
ple: GAVO DC.

e referenceURL — A URL at which people can learn more about your data
center. Example: http://www.g-vo.org.

e managingOrg — an ivo id of the organisation you're running the dc for.
The default is ivo://<your authority>/org, the content defined in the
manager resRec. If your institution has a registry entry independent of
your DC, you can enter that IVORN here as well (and you would remove
the manager resRec).

In the manager resRec (if you have it), change:

e creationDate — as above for authority.

e title — the name of the organisation on behalf of which you are running
the data center. Example: Observatory of Utopia

e description and referenceURL — as the analoguous item for author-
ity, just for the organisation for which you are running the data
center (e.g., your "home institute"). Example: The Observatory of
Utopia is Lilliput’s largest astronomical institution with ten large
telescopes spread around the Plain Mountains. Beautiful vistas and
lush valleys make them an attractive holiday spot as well. Book now
at the Observatories soft money department at 1-800-GOOD-GREED.

After you've specificed all that, you're ready to define your first resources, viz,
your registry itself, the authority, and the organisation that's managing it. These
are predefined using the data you just filled in in the //services RD. To publish
them, you say:

gavo pub //services

Registering DaCHS-external Services

The registry interface of DaCHS can be used to register entities external to
DaCHS; actually, you're already doing this when you're claiming an authority.

To register a non-service "resource", you can fill out a resRec RD element. You
could reserve an RD (say, GAVOROOT/inputs/ext.rd to collect such external regis-
trations, or you could put them alongside internal services into their respective
RDs. You will then usually just use the resRec's id attribute to determine the
IVORN of resource record. It will then be ivo://<your authority>/<rd id>/<id

of resRec>.

In all likelihood, however, you will want to register services. To do that, use a
normal service definition with with a nullCore. You probably need to manually
give an accessURL. The most common case is that of a service with a WebBrowser
capability. These result from external or static renderers. Thus, the pattern
here usually is:

<service id="myservice" allowed="external">
<nullCore/>
<meta>
shortName: My external service
description: This service does wonderful things, even though\
it’s not based on GAVO’s DaCHS software.
</meta>

ref.html#element-resrec

<publish render="external" sets="ivo_managed">
<meta name="accessURL">http://wherever.else/svc</meta>
</publish>

</service>

Of course, you will normally need to add further metadata as discussed above.
gavo pub should complain if there's metadata missing, though.

The "services" can be fairly funky, actually; here's how GAVO registers their
ADQL reference card:

<service id="adqlref" allowed="external">
<nullCore/>
<meta>
shortName: GAVO ADQL ref
creationDate: 2012-11-05T14:24:00Z
title: The GAVO ADQL reference card
subject:Virtual Observatory
subject:Standards
subject:ADQL
description: GAVO’s ADQL reference card briefly gives an overview \
of the SQL dialect used in the V0. It is available as a PDF\
file and as Scribus source under the CC-BY license.
referenceURL:http://www.g-vo.org/pmwiki/About/ADQLReference
</meta>
<publish render="external" sets="ivo_managed,local">
<meta name="accessURL">http://docs.g-vo.org/adqlref/adqlref.pdf</meta>
</publish>

</service>

It is likely that if you register external services, you'll want to manage authorities
other than [ivoa]authority as used by DaCHS. If you do, just add authority
record(s) as before in the registry-interfacerecords STREAM in your userconﬁg
RD. And do not forget to add lines like:

<meta name="managedAuthority">edu.euro-vo.org</meta>

within the <service id="registry" in the user config.
Registering Web Interfaces (And More)

A typical situation is that you have a standard service (SSA, SCS, SIAP, etc) and
a form-based custom service on the same data. Since the form-based service
caters to humans, it can require quite different input parameters (and thus
usually cores) and output tables, and so you'll usually have a different service
on it.

If you want to publish both services to the VO, you could add publish elements
with sets="ivo_managed" to both service elements — but that would yield two
resource records (which you then should link via relatedTo metas). At least
when the form interface doesn't add significant functionality, this would usually
seem overkill — e.g., your service would show up twice in resource listings.

Therefore, it is typically preferable to add the web interface as a capability to
the the resource record of the standard service. To let you do that, the publish
element takes an optional service attribute containing the id of a service that
should be used to fill the capability's metadata.

Here's an example:

<service id="web" defaultRenderer="form">
<meta name="title">Form-based service</meta>
<!-- add this service to the local roster —-->
<publish render="form" sets="local"/>

</service>

<service id="ssa" allowed="form,ssap.xml">
<publish render="ssap.xml" sets="ivo_managed"/>
<!-- now make a WebBrowser capability on this service in the IVOA
published resource record, based on the service with the id web -->
<publish render="form" sets="ivo_managed" service="web"/>

</service>

To publish
Simple OAI operation

If you want to check what you have published, see the /oai.xml on your
server, e.g., http://localhost:8080/0ai.xml. This is a plain OAI-PMH inter-
face with some style sheets (if you want to customize them, copy them to
rootDir/web/xs1/). The default style sheets add a link to "All identifiers defined
here". Follow it to a list of all records you currently publish.

The OAI endpoint can also be used to help you in debugging validity problems
with your registry content. To XSD-validate your registry without bothering the
RofR (see above), you can do the following:

curl <your oai.xml url>?verb=ListRecords&metadataPrefix=ivo_vor [\
xmlstarlet fo > toval.xml

gavo admin xsdValidate toval.xml

http://localhost:8080/oai.xml

This may result in a few error messages; if you don't understand them, it's a
good idea to just go to the respective line in toval.xml and give it a long, hard
look.

Making the VO see your Registry

The VO registry is a distributed system. There still is some sort of root, the
Registry of Registries or RofR. Once your system provides sufficient metadata,
go to http://rofr.ivoa.net/regvalidate/regvalidate.html and enter your registry
endpoint (i.e., your installation’s root URL with /oai.xml| appended).

GAVO DaCHS is lenient with missing metadata and will deliver invalid VORe-
source for records missing some. It is not unlikely that your registry will not
validate on the first attempt. Reading the error messages should give you a
hint what's wrong. You can also use the gavo val command on the RDs that
generate invalid records to figure out what's wrong.

Once your registry passes the validation test, you can add it to the RofR, and
the full registries will start to harvest your registry (after a while).

Adapting DaCHS for Your Site

As delivered, the web interface of DaCHS will make it seem you're running a
copy of the GAVO data center, with some metadata defused such that you are
not actually disturbing our operation if you accidentally activate your registry
interface. You should thus first customize the items given in etc/defaultmeta.txt
(as discussed in Registry Matters).

The next adaptations are done through the configuration (as discussed in Con-
figuration Settings, i.e., usually in /etc/gavo.rc). The most relevant item here
is [web]sitename, which should contain a terse identifier for the site (like "GAVO
Data Center"). It is shown in titles and top headlines in many places. If you
plan to use DaCHS' embargo feature together with user authorisation, you must
also set [weblrealm to some characteristic string. You could use the site name
here; some user agents use it to display a prompt like "Credentials for <realm>"
or similar.

If you want, you can set [weblfavicon to either a webDir-relative path or a full
URL to a favicon.

It is also advisable to configure [generallmaintainerAddress to a mail address of
a person who will read problem reports. DaCHS doesn’t send many of those
yet, but it's still valuable if the software can cry for help if necessary. Sending
mail only works if the local machine can actually send mail. If there is no MTA

10

http://rofr.ivoa.net/
http://rofr.ivoa.net/regvalidate/regvalidate.html
https://en.wikipedia.org/wiki/Favicon

on your machine yet, we recommend nullmailer as a lightweight and easy-to-
configure sendmail stand-in. If you use something else, you may need to adapt

[general] sendmail.

For the rest, you can customize almost everything by overriding built-in re-
sources. There are five major entities that you can override:

e customisation hooks

userconfig RD

Simple Web Resources

Templates

Overridden System RDs

If you find you need to override anything but the logo, please talk to us first —
we'd in general prefer to provide customisation hooks. Overridden distribution
files are always a liability on upgrades.

Customisation Hooks

Operator CSS

To override css rules we distribute or add new rules, avoid changing
gavo_dc.css as described in Simple Web Resources, as that will be a liabil-
ity when upgrading. Instead, drop a CSS file somewhere (recommended loca-
tion: GAVO_ROOT /web/nv_static/user.css) and add a configuration item in
[webloperatorcss. With the recommended location, this would work out to be:

[web]

operatorCSS: /static/user.css

in /etc/gavo.rc.

This can also be an external URL, but we recommend against that, as that
would force a browser to open one external connection per web page delivered.

By far the most common complaint is that we are limiting the width of p and li
elements to 40em. We believe that text lines longer than about 80 characters
are hard to read and should be avoided. On pages with tables where users
might actually want to run browsers filling the entire screen, this choice cannot
be made through a sensible choice of the width of the user agent window on
the user side but requires CSS intervention.

Having said that, if you really think you want window-filling text lines, just put:

11

p, 1i {
max-width: none;

}

into your operator CSS.
XSL configuration

DaCHS employs client-side XSLT for some purposes -- for instance, to show OAI-
PMH (registry) responses in web browsers, to allow perusing datalink results in
the browser, and to allow web browsers some rudimentary interaction with UWS
applications like TAP.

The default XSLT contains references to the GAVO data center; to change
these (or something else), override the xsl config stylesheet, which is expected
at /static/xsl/dachs-xsl-config.xsl. The recommended way to go about this is:

cd /var/gavo # or whereever your DaCHS root is
cd web/nv_static

mkdir -p xsl

cd xsl

gavo admin dumpDF web/xsl/dachs-xsl-config.xsl > dachs-xsl-config.xsl

Then edit dachs-xs1-config.xsl. Note that you have to restart the server once
to make it notice the override.

Userconfig RD

Fairly new in DaCHS is an RD exclusively for configuration. This is a place
in which you can put streams that fill certain hooks; we expect to move more
configuration into userconfig.

DaCHS has a builtin RD //usercontig that is updated as you update DaCHS.
It always contains fallbacks for everything that can be in userconfig used by the
core code. To override something, pull the elements in questions in your own
userconfig RD and edit it there.

Your own userconfig RD is expected in $GAVO_DIR/etc/userconfig.rd. If it's not
there yet, there's nothing wrong with starting with the distributed one:

cd ‘gavo config configDir¢

gavo admin dumpDF //userconfig > userconfig.rd

12

Once it's already there, use dumpDF //userconfig and, say, less to pick out the
templates for whatever elements you need to copy. Currently, userconfig is
already used in configuring the registry interface and extending the built-in
obscore schema.

Changes to userconfig.rd are picked up by DaCHS but will usually not be visible
in the RDs they end up in. This is because DaCHS does not track which RDs
make use of userconfig, so these will typically need to be reloaded manually.
For instance, if you changed TAP examples, you'd need to run:

gavo serve exp //tap

to make your change show up in the web interface. Although usually not nec-
essary, you can reload userconfig itself using:

gavo serve exp %

Simple Web Resources

For items coming from static (e.g., images, css, javascript), this overriding
works by dropping same-named files in $GAVO_ROOT/web/nv_static.

Thus, you should put a PNG of your logo into
$GAVO_ROOT/web/nv_static/img/logo_medium.png.

Other files you may want to override in this way include

® css/gavo_dc.css — the central CSS; you could use this for skinning. How-
ever, we recommend you just add an @import url("<your css url>"); to
the file the server delivers by default, since some of the css is almost
necessary, and you want easy upgrade paths when we change the master

CSS.

® help.shtml — the help file. Unfortunately, we blurb quite a lot about
GAVO in there right now. We'll think of something more parametrisable,
but meanwhile you may want to have your own version

® img/logo_big.png, img/logo_tiny.png — scaled versions of your logo;
logo__big should be 200 pixels wide or more, logo_ tiny of order 50 pixels
wide.

® js/gavo.js — could be the place for additional javascript; but frankly, if you
want custom javascript, write to us and we'll think of a sane mechanism.

13

® xsl/oai.xsl, xsl/uws-joblist-to-html.xsl, xsl/uws-job-to-html.xsl, and
vosi.xsl — XSLT stylesheet files. If you override these to customize them,
please let us know. We'd try to put out generic stylesheets that are cus-
tomisable without having to muck around in stuff that's basically func-
tionality.

Templates
There is now a document on HTML templating in DaCHS
Overridden System RDs

You can copy system RDs from gavo/resources/inputs/__system__ in the distri-
bution to $GAVO_R00T/inputs/__system__ (adapt if you have played tricks with
inputsDir) and edit them there. Again, if you feel you need to do that, contact
us first, maybe we can work something out; it's a liability for upgrades.

Other documents

The default help file and the default sidebar link to a privacy policy that you
should put down in $GAVO_ROOT/web/nv_static/doc/privpol.shtml. The docu-
ment must be well-formed XHTML. Also, files with an extension shtml will
be interpreted as templates over the service //services/root, which means
that you can use the usual render functions and data items; the same goes
for disclaimer.html (referenced from the standard sidebar) and, if you offer
SOAP services, soaplocal.html. See the respective pages in the GAVO DC
(http://dc.g-ov.org/static/doc/...) for ideas as to what to include.

The Vanity Map

DaCHS' URL scheme leads to somewhat clunky URLs that, in particular, reflect
the file system underneath. While this doesn’t matter to the VO registry, it is
possibly unwelcome when publishing URLs outside of the VO. To overcome it,
you can define "vanity names", single path elements that are mapped to paths.

These mappings are read from the file GAVO_ROOT/etc/vanitymap.txt. The file
contains lines of the format:

<target> <key> [<option>]

Target is a path that must not include nevowRoot and must not start with a
slash (unless you're going for very special effects).

14

http://docs.g-vo.org/DaCHS/templating.html

Key normally is a single path element (i.e., a string without a slash). If this
path element is found in the first segment, it is replaced with the segments in
target.

<option> can only be !redirect or empty right now.

If it is 'redirect, <key> may be a path fragment (as opposed to a single path ele-
ment); leading and trailing slashes are ignored. If the enire query path matches
this key, a redirect to this key is generated. This is intended to let you shut down
services and introduce replacements. If the incoming URL contains a query, it
will be appended to the replacement URL. Thus, even stored queries or forms
can potentially work across such a redirect.

You can also (ab)use the redirect option to give vanity names, but since the
target will show up in the browser address line, normal maps are highly preferred.
The only time normal maps don’t work for this is when the resource directory
is identical to the vanity name (you'll get an endless loop then), so you should
avoid that situation.

Empty lines and #-on-a-line-comments are allowed in the input.

As an example, here’s the vanity map that DaCHS had builtin as of version 0.6:

__system__/products/p/get getproduct
__system__/services/registry/pubreg.xml oai.xml
__system__/services/overview/external odoc
__system__/dc_tables/show/tablenote tablenote
__system__/dc_tables/show/tableinfo tableinfo
__system__/services/overview/admin seffe
__system__/tap/run/tap tap

__system__/adql/query/form adql !redirect

Note again that <key> must be a single path element only.

Configuration Settings

Many aspects of the data center can be configured using INI-style configuration
files. DaCHS tries to obtain them from a global location (/etc/gavo.rc or
whatever is in the GAVOSETTINGS environment variable) and a user-specific file
(~/gavo.rc or whatever is in the GavocusTaM variable). The server should probably
be configured in the global location exclusively, since otherwise it will behave
differently depending on which user starts the server.

This section starts with a walkthrough through the more relevant settings, sec-
tion by section; below, there is a reference of all supported configuration items.

15

Walkthrough

The general Section

This mainly sets paths. The most important is rootDir, a directory most other
paths are relative to. This is the one you'll most likely want to change. If you,
e.g., wanted to have a private DaCHS tree, you could put:

[generall

rootDir: /home/user/gavo

into the personal configuration file (which DaCHS searches in ~/.gavorc) by
default; this would then override the analogous specification in /etc/gavorc.

The other paths in this section are interpreted relative to rootDir unless they
start with a slash.

You may want to set tempDir and cacheDir to a directory local to your machine
if rootDir is mounted via a network. Also note that we do no synchronisation
for writing to the log (and never will -- we will provide syslog based logging if
necessary), so you may want to tweak logDir too to keep actions from seperate
users seperate.

The web Section

You typically want to adapt several settings here. First bindAddress gives the IP
address of the interface DaCHS will accept requests from. By default, that's
localhost, meaning that your server will only talk to the machine it runs on.
Once you want to serve other people, you will need to change this. For most
systems, binding to all interfaces is what you want; keep bindAddress empty to
accomplish that.

You may also want to change serverPort. That is the TCP port DaCHS listens
to. The default, 8080, is what's commonly used in test setups. On machines
dedicated to DaCHS, you would set it to 80, the standard HTTP port; this will
of course fail if there's already another web server running.

DaCHS frequently needs to produce full URLs to itself. To do that, it uses
serverURL. While we could potentially infer that from bindAddress and serverPort,
today's web setups are frequently too complicated to make that work. So, adapt
serverURL, too, to the base URL of your server, without any trailing slash. A
complete setup for a public server would thus look like this:

16

[web]
bindAddress:
serverPort: 80

serverURL: http://mydc.myvo.org

Note that serverURL must include the port if it is not 80 (or 443 for https). If
you actually kept the default and just put the machine on the net, your web
section would need to include something like:

[web]
bindAddress:

serverURL: http://your.machine.example.org:8080

— the empty bindAddress is necessary so DaCHS doesn’t just bind to the loopback
address, the serverURL because DaCHS has no way of knowing the preferred
name of the machine it's running under; it could add the port, which it knows,
but doing that would, e.g., make the lives of people operating behind reverse
proxies hard.

While you are at it, set sitename to a short string describing your server (this is
currently only used in the registry interface).

You will probably also want to set adminpasswd. If set, you can log in on your
server as user gavoadmin with this password. Gavoadmin basically may do
everything (access protected resources, clear caches, etc). The password is
given in clear text; doing some kind of encryption would only make sense if you
were prepared to enter some kind of passphrase every time you start the server.
As in other places, DaCHS assumes the machine it runs on is trusted.

The db Section

In the db section, some global properties of the database access layer are defined.
Currently, the most releveant one is profilePath. This is a colon-separated list
of rootDir-relative paths in which DaCHS looks for database profiles (expansion
of home directories is supported). The first match in any of these directories
wins. This is useful when you have a test setup and a production setup --
just say include dsn in the common profiles (by default in configDir) and have
separate dsn files in the ~/.gavo directories of the accounts feeding the test and
production databases.

You probably do not want to to mess with any settings ending in Roles. These
are for rather exotic setups where DaCHS needs to accomodate other software.

17

The profiles Section

The profile section maps profile names to file names. These file names are
relative to any of the directories in db.profilePath. Usually, you should keep
whatever gavo init has come up with and hence not change anything here.

The profiles contain a specification of the access to the database in (unfortu-
nately yet another, but simple) language. Each line in such a profile is either a
comment (starting with #), an assignment (with "=") or an instruction (con-
sisting of a command and arguments, separated by whitespace).

Keywords available for assignment are

e host -- the host the database resides on. Leave empty for a Unix socket
connection.

e port -- the port the database listens on. Leave empty for default 5432.
e database -- the database your tables live in.
e user -- the user through which the db is accessed.

e password -- the password of user.
There's just one command available, viz.,

e include -- read assignments and instructions from the profile given in the
argument

gavo init creates four profile files, dsn, feed, trustedquery, and untrustedquery.
These are referred to in the default profiles section, and are basically required
by the python code.

Reference

You can get an up-to-date version of this by running gavo config.

Section [general]

Paths and other general settings.

e cacheDir: path relative to rootDir; defaults to 'cache’ -- Path to the DC's
persistent scratch space

18

configDir: path relative to rootDir; defaults to 'etc’ -- Path to the DC's
non-ini configuration (e.g., DB profiles)

defaultProfileName: string; defaults to " -- Deprecated and ignored.

gavoGroup: string; defaults to 'gavo’ -- Name of the unix group that
administers the DC

group: string; defaults to 'gavo’ -- Name of the group that may write into
the log directory

inputsDir: path relative to rootDir; defaults to 'inputs’ -- Path to the
DC's data holdings

logDir: path relative to rootDir; defaults to 'logs’ -- Path to the DC's logs
(should be local)

logLevel: value from the list info, debug, warning, error; defaults to 'info’
-- How much should be logged?

maintainerAddress: string; defaults to " -- An e-mail address to send
reports and warnings to; this could be the same as contact.email; in
practice, it is shown in more technical circumstances, so it's adviable to
have a narrower distribution here.

operator: string; defaults to " -- Deprecated and ignored. Use con-
tact.email in defaultmeta.txt instead.

platform: string; defaults to " -- Platform string (can be empty if inputsDir
is only accessed by identical machines)

rootDir: string; defaults to '/var/gavo’ -- Path to the root of the DC file
(all other paths may be relative to this

sendmail: string; defaults to 'sendmail -t' -- Command that reads a mail
from stdin, taking therecipient address from the mail header, and transfers
the mail (this is for sending mails to the administrator). This command
is processed by a shell (generally running as the server user), so you can
do tricks if necessary.

stateDir: path relative to rootDir; defaults to 'state’ -- Path to the DC's
state information (last imported,...)

tempDir: path relative to rootDir; defaults to 'tmp’ -- Path to the DC's
scratch space (should be local)

uwsWD: path relative to rootDir; defaults to 'state/uwsjobs’ -- Directory
to keep uws jobs in. This may need lots of space if your users do large
queries

19

e webDir: path relative to rootDir; defaults to 'web' -- Path to the DC's
web related data (docs, css, js, templates...)

e xsdclasspath: shell-type path; defaults to 'None' -- Classpath necessary to
validate XSD using an xsdval java class. You want GAVO'’s VO schemata
collection for this. Deprecated, we're now using libxml2 for validation.

Section [adql]

Settings concerning the built-in ADQL core

e webDefaultLimit: integer; defaults to '2000' -- Default match limit for
ADQL queries via a web form

Section [async]

Settings concerning TAP, UWS, and friends

e csvDialect: string; defaults to 'excel’ -- CSV dialect as defined by the
python csv module used when writing CSV files.

e defaultExecTime: integer; defaults to '3600" -- Default timeout for UWS
jobs, in seconds

o defaultExecTimeSync: integer; defaults to '60" -- Default timeout for
synchronous UWS jobs, in seconds

e defaultLifetime: integer; defaults to '172800’ -- Default time to destruc-
tion for UWS jobs, in seconds

o defaultMAXREC: integer; defaults to '2000" -- Default match limit for
ADQL queries via the UWS/TAP

e hardMAXREC: integer; defaults to '20000000" -- Hard match limit (i.e.,
users cannot raiss MAXREC or TOP beyond that) for ADQL queries via
the UWS/TAP

e maxTAPRunning: integer; defaults to '2" -- Maximum number of TAP
jobs running at a time

20

Section [db]
Settings concerning database access.

e adqlProfiles: set of strings; defaults to 'untrustedquery’ -- Name(s) of
profiles that get access to tables opened for ADQL

e defaultLimit: integer; defaults to '100" -- Default match limit for DB
queries

e interface: string; defaults to 'psycopg?’ -- Don’t change

e maintainers: set of strings; defaults to 'admin’ -- Name(s) of profiles that
should have full access to gavo imp-created tables by default

e msgEncoding: string; defaults to 'utf-8' -- Encoding of the messages
coming from the database

e profilePath: shell-type path; defaults to '~/.gavo:$configDir’" -- Path for
locating DB profiles

e queryProfiles: set of strings; defaults to 'trustedquery’ -- Name(s) of
profiles that should be able to read gavo imp-created tables by default

Section [ivoal
The interface to the Greater VO.

e authority: string; defaults to 'x-unregistred’ -- The authority id for this
DC; this has no leading ivo://

e dalDefaultLimit: integer; defaults to '10000" -- Default match limit on
SCS/SSAP/SIAP queries

e dalHardLimit: integer; defaults to '1000000' -- Hard match limit on
SCS/SSAP/SIAP queries (be careful: due to the way these protocols
work, the results cannot be streamed, and the results have to be kept in
memory; 1e7 rows requiring 1k of memory each add up to 10 Gigs...)

e oaipmhPageSize: integer; defaults to '500" -- Default number of records
per page in the OAI-PMH interface

e sdmVersion: value from the list 1, 2; defaults to 'l -- Version of the
spectral data model we generate our spectra as (unless someone asks for
another version explicitly).

e votDefaultEncoding: value from the list binary, td; defaults to 'binary’ --
Default 'encoding’ for VOTables in many places (like the DAL responses;
this can be user-overridden using the _ TDENC local HTTP parameter.

21

Magic Section [profiles]

Ignored and deprecated, only here for backward compatibility. The items in this
section are all of type profile name. You can add keys as required.

Section [ui]

Settings concerning the local user interface

e outputEncoding: string; defaults to 'iso-8859-1" -- Encoding for system
messages. This should match what your terminal emulator is set to

Section [web]
Settings related to serving content to the web.

e adminpasswd: string; defaults to " -- Password for online administration,
leave empty to disable

e adsMirror: string; defaults to 'http://ads.g-vo.org’ -- Root URL of ADS
mirror to be used (without a trailing slash)

e bindAddress: string; defaults to '127.0.0.1" -- Interface to bind to

e enableTests: boolean; defaults to 'False’ -- Enable test pages (don't if you
don't know why)

e favicon: path relative to webDir; defaults to 'None’ -- Webdir-relative
path to a favicon

e graphicMimes: list of strings; defaults to 'image/fits,image/jpeg’ -- MIME
types considered as graphics (for SIAP, mostly)

e jsSource: boolean; defaults to 'False’ -- If True, Javascript will not be
minified on delivery (this is for debugging)

e maxPreviewWidth: integer; defaults to '300" -- Ignored, only present for
backward compatiblity

e maxUploadSize: integer; defaults to '20000000' -- Maximal size of file
uploads in bytes.

e nevowRoot: path fragment; defaults to '/’ -- Path fragment to the server's
root for operation off the server's root; this must end with a slash (and,
frankly, if you must use this feature, you'll probably encounter some bugs.
we want to fix those, though.)

22

http://ads.g-vo.org

preloadRDs: list of strings; defaults to " -- RD ids to preload at the server
start (this is mainly for RDs that have execute children that should run
regularly).

previewCache: path relative to webDir; defaults to 'previewcache' --
Webdir-relative directory to store cached previews in

realm: string; defaults to "X-Unconfigured' -- Authentication realm to be
used (currently, only one, server-wide, is supported)

serverPort: integer; defaults to '8080" -- Port to bind the server to

serverURL: string; defaults to 'http://localhost:8080" -- URL fragment
used to qualify relative URLs where necessary. Note that this must contain
the port the server is accessible under from the outside if that is not 80.

sitename: string; defaults to '"Unnamed data center’ -- A short name for
your site

sqlTimeout: integer; defaults to '15" -- Default timeout for db queries via
the web

templateDir: path relative to webDir; defaults to 'templates’ -- webDir-
relative location of global nevow templates

user: string; defaults to 'gavo’ -- Run server as this user.

voplotCodeBase: URL fragment relative to the server's root; defaults to
'None' -- Deprecated and ignored.

voplotUserman: URL fragment relative to the server's root; defaults to
'Deprecated and ignored’ -- URL to the documentation of VOPlot

Managing Runtime Resources

DaCHS caches quite a lot of information rather aggressively, which means that
editing information on disk may not immediately influence the behaviour of the
server. This is particularly true for the default meta (etc/defaultmeta.txt), the
vanity name translations (etc/vanitynames.txt), and the database profiles. Most
of this can is reloaded on gavo serve reload, but certain settings (like serverPort
and bindAddress) only take effect on a restart.

The resource descriptors are special. The server should pick up edits on RDs
automatically, with the following exceptions:

e Built-in __system__ RDs are not controlled. The main reason here is that
these may not actually have disk files behind them, depending on the
installation they may come from an archive.

23

http://localhost:8080

e Only the file the RD was loaded from is checked. This means that
if you override a built-in __system__ RD with your own version in

inputs/__system__, DaCHS will not automatically pick that up

e If you access an RD with no corresponding file and create that file after-
wards, that change will also not be picked up automatically.

gavo serve reload will reload even those RDs. To selectively invalidate RDs that
fall under these categories when you don't want to reload or restart the server,
use the administration panel for the RD through the webserver; see Admin Web
Interfaces

Admin Interfaces

Admin Web Interfaces

Some operation on the data center can be done from its web interface. To use
these features, you have to set the [web] adminpasswd configuration item. You
can then use the "Log in" link in the side bar using gavoadmin as the user name.

If you are logged in as gavoadmin, you should see an "Admin me"-link in the
side bar of services. The page behind that link lets you block all services on the
respective RD — where blocking means all requests are rejected until the RD is
reloaded — and reload the RD. This is the recommended way to notify DaCHS
that an RD has changed and needs re-reading.

In the form, you can also set scheduled down times. This is for VOSI, an
interface clients could use to figure out whether a service can reasonable be
expected to work. Since there don't seem to be clients exploiting the VOSI
endpoints for such purposes so far, you probably don't need to bother.

You can directly access the administraion panel for an RD by accessing
/seffe<rdId>, e.g , seffe/__system__/services.

There are several more or less introspective resources within DaCHS that do
not need authentication.

Among those, there's /browse. That's a list of all RDs that have (ivo or local)
published services or data in them. Links on the RDs lead to info pages on the
RDs, in particular giving tables and services within the RD.

robots.txt

DaCHS answers to requests for robots.txt with a built-in resource that forbids
to index URLs with /seffe and /login. You may want to keep other pages out

24

of indices. In particular, /browse will let robots find unpublished services. To
exclude those, add a file robots.txt in your webDir (run gavo config webDir to
find out where that is) and add lines like:

Disallow: /browse

The built-in rules will be prepended to whatever you specify in your user
robots.txt. For more information on what you can put into robots.txt, see
Robot exclusion standard

Admin CLI Interfaces

You can also perform various housekeeping operations using gavo admin. Try
gavo admin --help. This includes user management (there's a bit on it in the tu-
torial), precomputing previews for images, and create registry records for deleted
services that got lost.

An admin tool that comes in handy is gavo admin tapabort. Call it with a TAP
job id and a helpful (!) text to abort a TAP job and set it to an error state
giving a short explanation what happened and the helpful text. The idea is that
when users run queries against large tables without using indices (or do other
stupid things), you can send them messages in this way (and clear away their
resource hogs at the same time).

Upgrading
Upgrading DaCHS

In general, we try to make upgrades painless, but with a system allowing people
to play tricks with intenstines like DaCHS guarantees are hard. Be sure to
subscribe to DaCHS-users. We'll announce new releases there, together with
brief release notes pointing to possible spots of trouble. ldeally, you'll have a
development system and regression tests in place that let you diagnose problems
before going to production. Poke us for hints on good and easily-maitained
setups.

Upgrading Installations from Debian Package
That's easy:

apt-get update
apt-get upgrade

After the upgrade, be sure to run your regression tests (if you have defined any):

25

http://www.robotstxt.org/orig.html
http://lists.g-vo.org/cgi-bin/mailman/listinfo/dachs-users

gavo test ALL
gavo val -c ALL

This last command might complain about mismatches between RD and on-disk
metadata; there are several reasons why that may happen, including dumb or
clever things we've done in the software (in the latter case, the Changes file
should tell you about it). In any case, you should fix the problem, usually by
re-importing the respective table.

Upgrading Installations from SVN

The basic thing to remember: After every update, do, as a user with ingestion
privileges, the restart sequence:

gavo val -c ALL

sudo /etc/init.d/dachs stop # (or whatever you use to stop the server)
gavo upgrade

sudo /etc/init.d/dachs start # (or whatever you use to start the server)

gavo test ALL

© &H L BL B

In principle, gavo upgrade can run while the server is active, and with most
updates, users won't even see errors, but since you need to restart anyway, why
bother. On possible failures of the gavo val command, see the last paragraph
of the previous section.

The steps to update depend on what you did to install out of the subversion
checkout. If you initially said setup.py develop (which we recommend), all it
takes to upgrade is:

$ cd <checkout dir>
$ svn update

<run the restart sequence given above>

If you instead initially said setup.py install, do:

$ cd <checkout dir>
$ svn update
$ sudo python setup.py install

<run the restart sequence given above>

Upgrading Postgres

There's a howto over at http://docs.g-vo.org/DaCHS/howDol.html#
upgrade-the-database-engine

26

http://docs.g-vo.org/DaCHS/howDoI.html#upgrade-the-database-engine
http://docs.g-vo.org/DaCHS/howDoI.html#upgrade-the-database-engine

	Contents
	Starting and stopping the server
	Publication
	Registry Matters
	Defining Basic Metadata
	Registering DaCHS-external Services
	Registering Web Interfaces (And More)
	Simple OAI operation
	Making the VO see your Registry

	Adapting DaCHS for Your Site
	Customisation Hooks
	Operator CSS
	XSL configuration

	Userconfig RD
	Simple Web Resources
	Templates
	Overridden System RDs
	Other documents
	The Vanity Map

	Configuration Settings
	Walkthrough
	The general Section
	The web Section
	The db Section
	The profiles Section

	Reference
	Section [general]
	Section [adql]
	Section [async]
	Section [db]
	Section [ivoa]
	Magic Section [profiles]
	Section [ui]
	Section [web]

	Managing Runtime Resources
	Admin Interfaces
	Admin Web Interfaces
	robots.txt
	Admin CLI Interfaces

	Upgrading
	Upgrading DaCHS
	Upgrading Installations from Debian Package
	Upgrading Installations from SVN

	Upgrading Postgres

