
TAP query
A library to query TAP servers

Author: Markus Demleitner
Email: gavo@ari.uni-heidelberg.de

Contents

Obtaining the library 1

For the impatient 1

The ADQLTAPJob 2

Running a job 3

TAP parameters 4

Getting results 5

Errors 5

Uploads 6

Sync Querying 6

TAP is a relatively complex protocol to execute potentially long-running (ADQL)
queries on remote servers. As a part of the GAVO VOTable library, we provide
a shallow client that speaks TAP. It is the intention of this document to keep
the TAP spec from your reading list. If it doesn’t do that, complain, and we’ll
try to fix it.

1

mailto:gavo@ari.uni-heidelberg.de
http://www.ivoa.net/Documents/TAP/


Obtaining the library
See the GAVO VOTable Library documentation

For the impatient
All you need to query a server is its access URL. What we need here is the root
of the hierarchy, i.e., without any sync or async.

For the typcial case of a sync query, here’s the pattern to retrieve a sequence
of dictionaries, one per result line, using sync querying:

from gavo import votable

res = votable.ADQLSyncJob(
"http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap",
"SELECT * FROM TAP_SCHEMA.tables"
).run()

data, metadata = votable.load(res.openResult())
for row in metadata.iterDicts(data):

print row

Here’s a variation using async querying (meaning: your query can take a long
time if necessary), and yielding a numpy record array:

from gavo import votable
from numpy import rec

accessURL = "http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap"
query = "SELECT TOP 3 * FROM TAP_SCHEMA.tables"
job = votable.ADQLTAPJob(accessURL, query)
try:

job.run()
data, metadata = votable.load(job.openResult())

finally:
job.delete()

ra = rec.fromrecords(data, dtype=votable.makeDtype(metadata))

Note, however, that with record arrays NULL values will cause the whole thing
to fail. So, if you are after record arrays, our advice is to install astropy and
write:

from cStringIO import StringIO

from astropy.table import Table
from gavo import votable

2

http://vo.ari.uni-heidelberg.de/docs/DaCHS/votable.html


accessURL = "http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap"
query = "SELECT TOP 3 * FROM TAP_SCHEMA.tables"
job = votable.ADQLTAPJob(accessURL, query)
try:

job.run()
table = Table.read(StringIO(job.openResult().read()), format="votable")

finally:
job.delete()

print table

More on dataIterator and metadata can be found in the GAVO VOTable library
documentation.

The ADQLTAPJob
The class you will usually deal with is ADQLTAPJob, which is constructed with
the endpoint URL and the query. The construction will access the, which means
it may very well raise network-related exceptions.

You can pass a userParams dictionary to the constructor. This is intended for
tho TAP parameters (in particular, FORMAT, MAXREC, RUNID or service-defined ones).
You should not use userParams for UPLOAD but instead use the addUpload method
described below.

You can also change the parameters later using setParameter(key, value). This
again causes a server connection to be made, as are accesses to ADQLTAPJob’s
properties, viz.,

∙ executionDuration -- the number of seconds after which the server will kill
your job. Simply assign some integer to change it, though of course the
server might not let you.

∙ destruction -- a datetime.datetime (in UTC) at which the job will be
completely removed (i.e., even the results) from the remote server. Again,
you can assign datetime instances to try and change it.

∙ phase -- the current phase of the job. This is a string containing magic
values; the possible values are PENDING, QUEUED, EXECUTING, COM-
PLETED, ERROR, ABORTED (these are also available as symbols in tap-
query -- this provides some ward against typos). Most of them are pretty
self-explanatory, except that PENDING means you still can change the
query, whereas QUEUED jobs are, well, in the server’s queue and cannot
be changed any more. You should not assign to phase manually.

3

http://vo.ari.uni-heidelberg.de/docs/DaCHS/votable.html
http://vo.ari.uni-heidelberg.de/docs/DaCHS/votable.html
http://vo.ari.uni-heidelberg.de/docs/DaCHS/apidoc/gavo.votable.tapquery.ADQLTAPJob-class.html


∙ quote -- returns an estimate of the number of seconds your job will execute
on the remote machine. This is, of course, a guess even under the most
favorable circumstances. Some servers choose to not even try to guess,
in which case you’ll get a None. This cannot be assigned to.

∙ parameters -- a dictionary containing your parameters. You cannot assign
to parameters, and changing things here has no effect. Use setParame-
ter(key, value) instead.

Running a job
Once you have constructed (and possibly modified) a job, call start() to tell
the remote server to put it into its execution queue. You can then poll the job’s
phase (now and then):

job = votable.ADQLTAPJob(...)
job.executionDuration = 6000
job.start()
while job.phase not in set([tapquery.ERROR, tapquery.COMPLETED]):

time.sleep(10)

You can call abort() to kill a running job, and you can call delete() when done.
As a matter of fact, although server operators will eventually destroy your job
anyway, it’s common courtesy to clean up behind you unless you have good
reason to keep the result data. So the recommended pattern is:

job = votable.ADQLTAPJob(...)
try:

... do your thing ...
finally:

job.delete()

Now, doing the polling by hand is tedious, and this there is a function
waitForPhases(phases, ...) that takes a set of phases to wait for, and then
polls at increasing intervals (that you could control though the method’s fur-
ther arguments; see API docs for details).

But really, the run method is what you’d usually use; it has the added advantage
that it raises a RemoteError or a RemoteAbort exception if something went wrong
on the server side. So, the standard pattern is:

job = votable.ADQLTAPJob(...)
try:

... add uploads, set parameters if you must ...

... change UWS parameters (executionDuration, destruction, etc) ...
job.run()
... read results ...

finally:

job.delete()

4

http://vo.ari.uni-heidelberg.de/docs/DaCHS/apidoc/toc-gavo.votable.tapquery-module.html


TAP parameters
The following parameters are defined by the TAP spec:

∙ FORMAT -- the format you want to retrieve the data in. This defaults to
votable, and you should probably keep that default with this library (since,
if you have it, you can parse VOTables, right?). Other possibile values
include csv, tsv, fits, text, or html. Servers must support VOTables, the
other formats are optional

∙ MAXREC -- a limit as to how many rows are to be returned. This basically
works like the TOP phrase in ADQL and is rather superfluous when using
ADQL.

∙ RUNID -- some identifier you can pass. It could be used for tracking and
similar. The server should include it in results. If you don’t know what
it’s for, you probably don’t need it.

∙ LANG -- the query language. In this library, it defaults to ADQL. Let’s see
if the library is flexible enough to support other languages (which are not
specified yet).

∙ REQUEST -- specifies the operation you want from the server. "doQuery" is
what ADQLTAPJob fills in for you, and it’s what you should leave it at.

∙ QUERY -- the query you are posing. ADQLTAPJob specifies it for you, but if
you really wanted to, you could override it (e.g., using setParameter.

∙ UPLOAD -- table uploads and such. While you could manipulate this man-
ually, don’t. Use the addUpload method.

Getting results
Right now, this library heavily leans towards ADQL. When doing ADQL queries,
there is only one result. You can access it using the openResult() method, which
returns a file-like object (actually, it’s what urllib.urlopen returns) that you
can read your results from. Since successful ADQL queries return single-table
VOTables, you can feed this directly to votable.load(f):

data, metadata = votable.load(job.openResult())

ADQL TAP results are simple web resources. To get their URLs, there’s the
getResultURL method. This is particularly useful with uploads (see below).

More complex query patterns could yield more results; in that case, you will have
to inspect job.results, which is a list of triples of an access URL, an opaque
string-typed id, and a UWS "result type" that you probably can safely ignore.

5



Errors
All exceptions originating in the library are subclasses of tapquery.Error. For
simple applications, this is also available as votable.TAPQueryError.

The API docs list some exceptions you should expect; also, of course, all kinds
of network-related exceptions could come out of the library. No serious attempt
is being made to catch such exceptions and translate them. If something is
wrong network-wise, we feel it’s better to freely admit this.

TAP-level errors (like syntax errors in the query, timeouts, and the like) leave
error information server-side. Rather than inspecting the exception objects, you
should use the getErrorFromServer method on the ADQLTAPJob.

In this, proper TAP error messages (those coming back as VOTables) are parsed
out, data that’s not parseable as a TAP error message is returned as-is; thus
the string returned may be long (e.g., some fancy 404 HTML page).

Uploads
TAP allows uploads to servers, although not all services actually support this
(you can use a service’s capabilities to figure that out; we may add support for
parsing those if there’s demand).

Services that do support it let you at least upload using URLs to VOTa-
bles or upload VOTables inline. Both cases are supported in ADQLTAPJob’s
addUpload(name, data) method. name is the name that the table will be visible
as later. Use something that works as a regular SQL identifier here.

data can be either a string (which is then interpreted as the URL to take the
upload from) or a file-like object (that is then turned into an inline upload). In
both cases, only VOTable is (reliably) supported as the upload format.

Note that URLs of previous results work as upload URLs. Here’s an example
of how that might look like, where this retrieves all objects in PPMXL in the
vicinity of a detection of a neutrino:

from gavo import votable

accessURL = "http://dc.g-vo.org/tap"
job1 = votable.ADQLTAPJob(accessURL,

"SELECT nualpha, nudelta FROM amanda.nucand WHERE nch>100")
job1.run()

job2 = votable.ADQLTAPJob(accessURL,
"SELECT DISTINCT TOP 10000 raj2000, dej2000, pmRA, pmDE"
" FROM ppmxl.main"
" JOIN TAP_UPLOAD.nupos"

6

http://vo.ari.uni-heidelberg.de/docs/DaCHS/apidoc/toc-gavo.votable.tapquery-module.html


" ON (1= CONTAINS(POINT(’ICRS’,raj2000,dej2000),"
" CIRCLE(’ICRS’, nualpha , nudelta, 0.25)))")

job2.addUpload("nupos", job1.getResultURL())
job2.run()

dataIterator, metadata = votable.load(job2.openResult())
job1.delete()
job2.delete()

print list(dataIterator)

Sync Querying
TAP also supports a synchronous querying mode; for simple, quick queries, this
is simpler and has less overhead. So, if you are certain that your query will
run quickly and the result set is small, you can use the ADQLSyncJob. This
works mostly like the ADQLTAPJob, except of course everything that deals with
remote state management basically is a no-op. Instead, either run or start just
query the remote server and return when the server is done. For convenience,
they return the job itself, so that you can say things like:

print votable.ADQLSyncJob(
"http://dc.zah.uni-heidelberg.de/__system__/tap/run/tap",
"SELECT * FROM TAP_SCHEMA.tables"

).run().openResult().read()

All "unpredictable" exceptions on sync jobs are raised from within run; these will
usually be tapquery.WrongStatus or tapquery.NetworkError exceptions, for when
the TAP server has complained or something was wrong on the way between
the client and the server.

The WrongStatus instances have a payload attribute that contains any message
body the server might have sent with the headers; frequently this contains
explanations what may have gone wrong. Since no http headers are available,
there’s no saying what format the error message came in. Tell us if that bugs
you.

The error associated with the exception object will usually not be partic-
ularly useful. Instead, obtain an error message from the server using the
getErrorFromServer method like for ADQLTAPJobs.

7


	Contents
	Obtaining the library
	For the impatient
	The ADQLTAPJob
	Running a job
	TAP parameters
	Getting results
	Errors
	Uploads
	Sync Querying

