
GAVO DC Software Reference Documentation

Author: Markus Demleitner
Email: gavo@ari.uni-heidelberg.de
Date: 2016-03-16

Contents

Resource Descriptor Element Reference 13

Element apply . 15

Element bind . 16

Element column . 17

Element columnRef . 19

Element columnRef (view) . 20

Element condDesc . 20

Element customDF . 21

Element customRF . 22

Element data . 23

Element EDIT . 24

Element events . 24

Element execute . 25

Element foreignKey . 26

Element group . 26

Element httpUpload . 28

1

mailto:gavo@ari.uni-heidelberg.de

Element ignoreOn . 28

Element ignoreSources . 29

Element index . 29

Element inputDD . 30

Element inputKey . 32

Element job . 35

Element lateEvents . 36

Element macDef . 36

Element make . 37

Element map . 37

Element mixinDef . 38

Element mixinPar . 40

Element option . 40

Element outputField . 41

Element outputTable . 43

Element par . 46

Element param . 46

Element paramRef . 49

Element phraseMaker . 49

Element procDef . 51

Element processEarly . 52

Element processLate . 53

Element PRUNE . 54

Element publish (data) . 54

Element publish . 55

Element regSuite . 55

2

Element regTest . 56

Element resource . 57

Element resRec . 59

Element rowmaker . 60

Element script . 61

Element service . 62

Element setup . 64

Element simpleView . 65

Element sources . 65

Element stc . 66

Element table . 66

Element url . 69

Element values . 70

Element var . 71

Active Tags 72

Element FEED . 72

Element LFEED . 73

Element LOOP . 73

Element NXSTREAM . 74

Element STREAM . 75

Grammars Available 75

Element binaryGrammar . 75

Element binaryRecordDef . 76

Element cdfHeaderGrammar . 77

Element columnGrammar . 78

3

Element contextGrammar . 80

Element csvGrammar . 82

Element customGrammar . 83

Element dictlistGrammar . 84

Element directGrammar . 85

Element embeddedGrammar . 86

Element fitsProdGrammar . 88

Element fitsTableGrammar . 90

Element freeREGrammar . 91

Element iterator . 92

Element keyValueGrammar . 93

Element mapKeys . 95

Element mySQLDumpGrammar . 95

Element nullGrammar . 97

Element pdsGrammar . 98

Element reGrammar . 99

Element rowfilter . 101

Element rowsetGrammar . 102

Element sourceFields . 103

Element voTableGrammar . 104

Cores Available 105

Element adqlCore . 106

Element computedCore . 106

Element coreProc . 107

Element customCore . 108

Element dataFormatter . 109

4

Element dataFunction . 111

Element datalinkCore . 112

Element dbCore . 113

Element debugCore . 115

Element descriptorGenerator . 115

Element editCore . 116

Element fancyQueryCore . 117

Element fixedQueryCore . 118

Element inputTable . 119

Element metaMaker . 121

Element nullCore . 123

Element productCore . 124

Element pythonCore . 125

Element registryCore . 126

Element scsCore . 127

Element sdmCore . 128

Element siapCutoutCore . 129

Element ssapCore . 130

Element ssapProcessCore . 131

Element uploadCore . 133

Predefined Macros 133

Macro RSTcc0 . 134

Macro RSTccby . 134

Macro RSTservicelink . 134

Macro RSTtable . 135

Macro colNames . 135

5

Macro curtable . 135

Macro decapitalize . 136

Macro dlMetaURI . 136

Macro docField . 136

Macro fullDLMetaURL . 137

Macro fullDLURL . 137

Macro getConfig . 137

Macro getParam . 138

Macro inputRelativePath . 138

Macro inputSize . 139

Macro internallink . 139

Macro lastSourceElements . 139

Macro magicEmpty . 140

Macro metaString . 140

Macro nameForUCD . 141

Macro nameForUCDs . 141

Macro property . 141

Macro qName . 142

Macro quote . 142

Macro rdId . 142

Macro rdIdDotted . 143

Macro rootlessPath . 143

Macro rowsMade . 143

Macro rowsProcessed . 144

Macro schema . 144

Macro sourceDate . 144

6

Macro srcstem . 145

Macro standardPreviewPath . 145

Macro standardPubDID . 145

Macro tablename . 146

Macro tablesForTAP . 146

Macro test . 146

Macro today . 147

Macro upper . 147

Macro urlquote . 147

Mixins 148

The //epntap#table Mixin . 148

The //obscore#publish Mixin . 149

The //obscore#publishSIAP Mixin 151

The //obscore#publishSSAPHCD Mixin 153

The //products#table Mixin . 156

The //scs#positions Mixin . 156

The //scs#q3cindex Mixin . 157

The //siap#bbox Mixin . 157

The //siap#pgs Mixin . 158

The //slap#basic Mixin . 158

The //ssap#hcd Mixin . 158

The //ssap#mixc Mixin . 160

The //ssap#sdm-instance Mixin . 161

7

Triggers 162

Element and . 163

Element keyIs . 163

Element keyMissing . 163

Element keyNull . 164

Element keyPresent . 164

Element not . 164

Renderers Available 165

The admin Renderer . 165

The api Renderer . 165

The availability Renderer . 166

The capabilities Renderer . 166

The custom Renderer . 166

The dlasync Renderer . 166

The dlget Renderer . 167

The dlmeta Renderer . 167

The docform Renderer . 167

The examples Renderer . 167

The external Renderer . 168

The fixed Renderer . 169

The form Renderer . 169

The get Renderer . 169

The info Renderer . 169

The logout Renderer . 170

The mimg.jpeg Renderer . 170

The mupload Renderer . 170

8

The pubreg.xml Renderer . 170

The qp Renderer . 170

The rdinfo Renderer . 171

The scs.xml Renderer . 171

The siap.xml Renderer . 171

The siap2.xml Renderer . 172

The slap.xml Renderer . 172

The soap Renderer . 173

The ssap.xml Renderer . 173

The static Renderer . 174

The tableMetadata Renderer . 174

The tableinfo Renderer . 174

The tablenote Renderer . 174

The tap Renderer . 174

The upload Renderer . 175

The uws.xml Renderer . 175

Predefined Procedures 175

Procedures available for rowmaker apply 175

Procedures available for grammar rowfilters 188

Procedures available for datalink cores 190

Predefined Streams 193

Datalink-related Streams . 194

Other Streams . 195

9

Metadata 196

Meta inheritance . 196

Meta formats . 197

Macros in Meta Elements . 197

Typed Meta Elements . 197

Metadata in Standard Renderers . 202

RMI-Style Metadata . 203

Coverage Metadata . 206

Meta Stream Format . 207

Display Hints 208

Building Service Interfaces 209

Table-based cores . 210

Formatting the output . 215

Regression Testing 215

Introduction . 215

Writing Regression Tests . 216

RegTest URLs . 217

RegTest Tests . 219

Running Tests . 221

Examples . 222

10

Datalink Cores 225

Descriptors Generators . 227

Meta Makers . 228

Metadata Error Messages . 234

Data Functions . 235

Data Formatters . 237

Registry Matters . 238

Datalink and Obscore . 238

Datalink Examples . 239

Product Previews 242

Writing Custom Cores 244

Defining a Custom Core . 244

Giving the Core Functionality . 245

Errors . 246

Database Options . 247

Inheriting from TableBasedCore . 247

Python Cores instead of Custom Cores 247

Custom UWSes 248

Custom Pages 250

Manufacturing Spectra 253

Making SDM Tables . 254

Echelle Spectra 255

Table . 255

11

Supporting getData 256

Adapting Obscore 256

Writing Custom Grammars 257

Dispatching Grammars . 259

Functions Available for Row Makers 260

Scripting 266

SQL scripts . 266

Python scripts . 266

Script types . 267

Examples . 267

Embedded Documentation 268

ReStructuredText . 268

Examples Endpoints . 269

System Tables 269

dc.authors . 269

dc.datalinkjobs . 270

dc.groups . 270

dc.interfaces . 271

dc.metastore . 271

dc.products . 272

dc.res_dependencies . 273

dc.resources . 273

dc.resources_join . 274

12

dc.sets . 275

dc.subjects . 276

dc.subjects_join . 276

dc.tablemeta . 277

dc.users . 278

ivoa.ObsCore . 278

ivoa._obscoresources . 280

ivoa.emptyobscore . 280

tap_schema.columns . 282

tap_schema.groups . 282

tap_schema.key_columns . 283

tap_schema.keys . 283

tap_schema.schemas . 283

tap_schema.supportedmodels . 284

tap_schema.tables . 284

tap_schema.tapjobs . 284

uws.userjobs . 285

Bibliography 286

Resource Descriptor Element Reference
The following (XML) elements are defined for resource descriptors. Some el-
ements are polymorous (Grammars, Cores). See below for a reference on the
respective real elements known to the software.

Each element description gives a general introduction to the element’s use (com-
plain if it’s too technical; it’s not unlikely that it is since these texts are actually
the defining classes’ docstrings).

Within RDs, element properties that can (but need not) be written in XML
attributes, i.e., as a single string, are called "atomic". Their types are given in
parentheses after the attribute name along with a default value.

13

In general, items defaulted to Undefined are mandatory. Failing to give a value
will result in an error at RD parse time.

Within RD XML documents, you can (almost always) give atomic children either
as XML attribute (att="abc") or as child elements (<att>abc</abc>). Some of the
"atomic" attributes actually contain lists of items. For those, you should nor-
mally write multiple child elements (<att>val1</att><att>val2</att>), although
sometimes it’s allowed to mash together the individual list items using a variety
of separators.

Here are some short words about the types you may encounter, together with
valid literals:

∙ boolean – these allow quite a number of literals; use True and False or
yes and no and stick to your choice.

∙ unicode string – there may be additional syntactical limitations on those.
See the explanation

∙ integer – only decimal integer literals are allowed

∙ id reference – these are references to items within XML documents; all
elements within RDs can have an id attribute, which can then be used as
an id reference. Additionally, you can reference elements in different RDs
using <rd-id>#<id>. Note that DaCHS does not support forward refer-
ences (i.e., references to items lexically behind the referencing element).

∙ list of id references – Lists of id references. The values could be mashed
together with commas, but prefer multiple child elements.

There are also "Dict-like" attributes. These are built from XML like:

<d key="ab">val1</d>

<d key="cd">val2</d>

In addition to key, other (possibly more descriptive) attributes for the key within
these mappings may also be allowed. In special circumstances (in particular with
properties) it may be useful to add to a value:

<property key="brokencols">ab,cd</property>

<property key="brokencols" cumulative="True">,x</property>

14

will leave ab,cd,x in brokencols.

Many elements can also have "structure children". These correspond to com-
pound things with attributes and possibly children of their own. The name given
at the start of each description is irrelevant to the pure user; it’s the attribute
name you’d use when you have the corresponding python objects. For authoring
XML, you use the name in the following link; thus, the phrase "colRefs (contains
Element columnRef..." means you’d write <columnRef...>.

Here are some guidelines as to the naming of the attributes:

∙ Attributes giving keys into dictionaries or similar (e.g., column names)
should always be named key

∙ Attributes giving references to some source of events or data should always
be named source, never "src" or similar

∙ Attributes referencing generic things should always be called ref; of
course, references to specific things like tables or services should indicate
in their names what they are supposed to reference.

Also note that examples for the usage of almost everything mentioned here can
be found in in the GAVO datacenter element reference.

Element apply

A code fragment to manipulate the result row (and possibly more).

Apply elements allow embedding python code in rowmakers.

The current input fields from the grammar (including the rowmaker’s vars) are
available in the vars dictionary and can be changed there. You can also add
new keys.

You can add new keys for shipping out in the result dictionary.

The active rowmaker is available as parent. It is also used to expand macros.

The table that the rowmaker feeds to can be accessed as targetTable. You
probably only want to change meta information here (e.g., warnings or infos).

As always in procApps, you can get the embedding RD as rd; this is useful to,
e.g., resolve references using rd.getByRD, and specify resdir-relative file names
using rd.getAbsPath.

May occur in Element rowmaker.

15

http://docs.g-vo.org/DaCHS/elemref.html

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element bind

A binding of a procedure definition parameter to a concrete value.

The value to set is contained in the binding body in the form of a python
expression. The body must not be empty.

May occur in Element iterator, Element rowfilter, Element apply, Element job,
Element processLate, Element dataFormatter, Element regTest, Element core-
Proc, Element dataFunction, Element sourceFields, Element metaMaker, Ele-
ment phraseMaker, Element descriptorGenerator, Element processEarly.

16

Atomic Children

∙ Character content of the element (defaulting to <Not given/empty>)
-- The default for the parameter. The special value __NULL__ indi-
cates a NULL (python None) as usual. An empty content means a non-
preset parameter, which must be filled in applications. The magic value
__EMPTY__ allows presetting an empty string.

∙ description (whitespace normalized unicode string; defaults to None) --
Some human-readable description of what the parameter is about

∙ key (unicode string; defaults to <Undefined>) -- The name of the pa-
rameter

∙ late (boolean; defaults to ’False’) -- Bind the name not at setup time but
at applying time. In rowmaker procedures, for example, this allows you
to refer to variables like vars or rowIter in the bindings.

Element column

A database column.

Columns contain almost all metadata to describe a column in a database table
or a VOTable (the exceptions are for column properties that may span several
columns, most notably indices).

Note that the type system adopted by the DC software is a subset of postgres’
type system. Thus when defining types, you have to specify basically SQL
types. Types for other type systems (like VOTable, XSD, or the software-internal
representation in python values) are inferred from them.

Columns can have delimited identifiers as names. Don’t do this, it’s no end of
trouble. For this reason, however, you should not use name but rather key to
programmatially obtain field’s values from rows.

Properties evaluated:

∙ std -- set to 1 to tell the tap schema importer to have the column’s std
column in TAP_SCHEMA 1 (it’s 0 otherwise).

May occur in Element inputTable, Element table.

17

Atomic Children

∙ description (whitespace normalized unicode string; defaults to ”) -- A
short (one-line) description of the values in this column.

∙ displayHint (Display hint; defaults to ”) -- Suggested presentation; the
format is <kw>=<value>{,<kw>=<value>}, where what is interpreted
depends on the output format. See, e.g., documentation on HTML ren-
derers and the formatter child of outputFields.

∙ fixup (unicode string; defaults to None) -- A python expression the
value of which will replace this column’s value on database reads.
Write a ___ to access the original value. You can use macros
for the embedding table. This is for, e.g., simple URL generation
(fixup="’internallink{/this/svc}’+___"). It will only kick in when tu-
ples are deserialized from the database, i.e., not for values taken from
tables in memory.

∙ name (a column name within an SQL table. These have to match
[A-Za-z_][A-Za-z0-9_]*$. In a desperate pinch, you can generate delim-
ited identifiers (that can contain anything) by prefixing the name with
’quoted/’ (but you cannot use rowmakers to fill such tables).; defaults to
<Undefined>) -- Name of the column

∙ note (unicode string; defaults to None) -- Reference to a note meta on
this table explaining more about this column

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ required (boolean; defaults to ’False’) -- Record becomes invalid when
this column is NULL

∙ tablehead (unicode string; defaults to None) -- Terse phrase to put into
table headers for this column

∙ type (a type name; the internal type system is similar to SQL’s with
some restrictions and extensions. The known atomic types include: uni-
code, pql-float, text, spoly, char, raw, vexpr-mjd, boolean, file, smallint,
vexpr-string, scircle, vexpr-float, vexpr- date, pql-string, real, spoint, pql-
int, timestamp, pql-date, date, integer, box, pql-upload, double precision,
sbox, bigint, time, bytea; defaults to ’real’) -- datatype for the column
(SQL-like type system)

∙ ucd (unicode string; defaults to ”) -- UCD of the column

18

∙ unit (unicode string; defaults to ”) -- Unit of the values

∙ utype (unicode string; defaults to None) -- utype for this column

∙ verbLevel (integer; defaults to ’20’) -- Minimal verbosity level at which
to include this column

∙ xtype (unicode string; defaults to None) -- VOTable xtype giving the
serialization form

Structure Children

∙ values (contains Element values) -- Specification of legal values

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

∙ stc (non-settable internally used value; defaults to None) -- Internally
used STC information for this column (do not assign to unless instructed
to do so)

∙ stcUtype (non-settable internally used value; defaults to None) -- Inter-
nally used STC information for this column (do not assign to)

Element columnRef

A reference from a group to a column within a table.

ColumnReferences do not support qualified references, i.e., you can only give
simple names.

May occur in Element group.

Atomic Children

∙ key (unicode string; defaults to <Undefined>) -- The key (i.e., name) of
the referenced column or param.

∙ ucd (unicode string; defaults to None) -- The UCD of the group

∙ utype (unicode string; defaults to None) -- A utype for the group

19

Element columnRef (view)

A reference to a table column for building simple views.

May occur in Element simpleView.

Atomic Children

∙ key (unicode string; defaults to <Undefined>) -- Column name within
the referenced table.

∙ table (id reference; defaults to <Undefined>) -- Reference to the table
the field comes from.

Element condDesc

A query specification for cores talking to the database.

CondDescs define inputs as a sequence of InputKeys (see Element InputKey).
Internally, the values in the InputKeys can be translated to SQL.

May occur in Element scsCore, Element siapCutoutCore, Element resource, El-
ement productCore, Element dbCore, Element fancyQueryCore, Element edit-
Core, Element ssapProcessCore, Element ssapCore.

Atomic Children

∙ buildFrom (id reference; defaults to None) -- A reference to a column or
an InputKey to define this CondDesc

∙ combining (boolean; defaults to ’False’) -- Allow some input keys to be
missing when others are given? (you want this for pseudo- condDescs just
collecting random input keys)

∙ fixedSQL (unicode string; defaults to None) -- Always insert this SQL
statement into the query. Deprecated.

∙ joiner (unicode string; defaults to ’OR’) -- When yielding multiple frag-
ments, join them using this operator (probably the only thing besides OR
is AND).

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ required (boolean; defaults to ’False’) -- Reject queries not filling the
InputKeys of this CondDesc

20

∙ silent (boolean; defaults to ’False’) -- Do not produce SQL from this
CondDesc. This can be used to convey meta information to the core.
However, in general, a service is a more appropriate place to deal with
such information, and thus you should prefer service InputKeys to silent
CondDescs.

Structure Children

∙ group (contains Element group) -- Group child input keys in the input
table (primarily interesting for web forms, where this grouping is shown
graphically; Set the style property to compact to have a one-line group
there)

∙ inputKeys (contains Element inputKey and may be repeated zero or more
times) -- One or more InputKeys defining the condition’s input.

∙ phraseMaker (contains Element phraseMaker) -- Code to generate custom
SQL from the input keys

Element customDF

A custom data function for a service.

Custom data functions can be used to expose certain aspects of a service to
Nevow templates. Thus, their definition usually only makes sense with custom
templates, though you could, in principle, override built-in render functions.

In the data functions, you have the names ctx for nevow’s context and data for
whatever data the template passes to the renderer.

You can access the embedding service as service, the embedding RD as ser-
vice.rd.

You can return arbitrary python objects -- whatever the render functions can
deal with. You could, e.g., write:

<customDF name="now">
return datetime.datetime.utcnow()

</customDF>

May occur in Element service.

21

Atomic Children

∙ Character content of the element (defaulting to ”) -- Function body of
the renderer; the arguments are named ctx and data.

∙ name (unicode string; defaults to <Undefined>) -- Name of the render
function (use this in the n:render attribute in custom templates).

Element customRF

A custom render function for a service.

Custom render functions can be used to expose certain aspects of a service to
Nevow templates. Thus, their definition usually only makes sense with custom
templates, though you could, in principle, override built-in render functions.

In the render functions, you have the names ctx for nevow’s context and data
for whatever data the template passes to the renderer.

You can return anything that can be in a stan DOM. Usually, this will be a
string. To return HTML, use the stan DOM available under the T namespace.

As an example, the following code returns the current data as a link:

return ctx.tag[T.a(href=data)[data]]

You can access the embedding service as service, the embedding RD as ser-
vice.rd.

May occur in Element service.

Atomic Children

∙ Character content of the element (defaulting to ”) -- Function body of
the renderer; the arguments are named ctx and data.

∙ name (unicode string; defaults to <Undefined>) -- Name of the render
function (use this in the n:render attribute in custom templates).

22

Element data

A description of how to process data from a given set of sources.

Data descriptors bring together a grammar, a source specification and "makes",
each giving a table and a rowmaker to feed the table from the grammar output.

They are the "executable" parts of a resource descriptor. Their ids are used as
arguments to gavoimp for partial imports.

May occur in Element resource, Element computedCore, Element sdmCore.

Atomic Children

∙ auto (boolean; defaults to ’True’) -- Import this data set if not explicitly
mentioned on the command line?

∙ dependents (Zero or more unicode string-typed recreateAfter elements;
defaults to u’[]’) -- A data ID to recreate when this resource is remade;
use # syntax to reference in other RDs.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ updating (boolean; defaults to ’False’) -- Keep existing tables on im-
port? You usually want this False unless you have some kind of sources
management, e.g., via a sources ignore specification.

Structure Children

∙ grammar (contains one of keyValueGrammar, cdfHeaderGrammar, di-
rectGrammar, dictlistGrammar, freeREGrammar, voTableGrammar, cus-
tomGrammar, rowsetGrammar, fitsTableGrammar, csvGrammar, null-
Grammar, fitsProdGrammar, contextGrammar, columnGrammar, embed-
dedGrammar, binaryGrammar, pdsGrammar, reGrammar, mySQLDump-
Grammar) -- Grammar used to parse this data set.

∙ makes (contains Element make and may be repeated zero or more times)
-- Specification of a target table and the rowmaker to feed them.

∙ params (contains Element param and may be repeated zero or more times)
-- Param ("global columns") for this data (mostly for VOTable serializa-
tion).

∙ registration (contains Element publish (data)) -- A registration (to the
VO registry) of this data collection.

23

∙ rowmakers (contains Element rowmaker and may be repeated zero or more
times) -- Embedded build rules (usually rowmakers are defined toplevel)

∙ sources (contains Element sources) -- Specification of sources that should
be fed to the grammar.

∙ tables (contains Element table and may be repeated zero or more times)
-- Embedded table definitions (usually, tables are defined toplevel)

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element EDIT

an event stream targeted at editing other structures.

May occur in Element LFEED, Element LOOP, Element mixinDef, Element
FEED.

Atomic Children

∙ doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

∙ ref (unicode string; defaults to <Undefined>) -- Destination of the edits,
in the form elementName[<name or id>]

Element events

An event stream as a child of another element.

May occur in Element LFEED, Element LOOP, Element mixinDef, Element
FEED.

Atomic Children

∙ doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

24

Element execute

a container for calling code.

This is a cron-like functionality. The jobs are run in separate threads, so they
need to be thread-safe with respect to the rest of DaCHS. DaCHS serializes
calls, though, so that your code should never run twice at the same time.

At least on CPython, you must make sure your code does not block with the
GIL held; this is still in the server process. If you do daring things, fork off (note
that you must not use any database connections you may have after forking,
which means you can’t safely use the RD passed in). See the docs on CronJob.

Then testing/debugging such code, use gavo admin execute rd#id to immedi-
ately run the jobs.

May occur in Element resource.

Atomic Children

∙ at (Comma-separated list of strings; defaults to <Not given/empty>)
-- One or more hour:minute pairs at which to run the code each day.
This conflicts with every. Optionally, you can prefix each time by one of
m<dom> or w<dow> for jobs only to be exectued at some day of the
month or week, both counted from 1. So, ’m22 7:30, w3 15:02’ would
execute on the 22nd of each month at 7:30 UTC and on every wednesday
at 15:02.

∙ debug (boolean; defaults to ’False’) -- If true, on execution of external
processes (span or spawnPython), the output will be accumulated and
mailed to the administrator. Note that output of the actual cron job
itself is not caught (it might turn up in serverStderr). You could use
execDef.outputAccum.append(<stuff>) to have information from within
the code included.

∙ every (integer; defaults to <Not given/empty>) -- Run the job roughly
every this many seconds. This conflicts with at. Note that the first
execution of such a job is after every/10 seconds, and that the timers
start anew at every server restart. So, if you restart often, these jobs may
run much more frequently or not at all if the interval is large.

∙ title (unicode string; defaults to <Undefined>) -- Some descriptive title
for the job; this is used in diagnostics.

Structure Children

∙ job (contains Element job) -- The code to run.

25

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element foreignKey

A description of a foreign key relation between this table and another one.

May occur in Element inputTable, Element outputTable, Element table.

Atomic Children

∙ dest (unicode string; defaults to <Not given/empty>) -- Comma- sepa-
rated list of columns in the target table belonging to its key. No checks
for their existence, uniqueness, etc. are done here. If not given, defaults
to source.

∙ inTable (id reference; defaults to <Undefined>) -- Reference to the table
the foreign key points to.

∙ metaOnly (boolean; defaults to ’False’) -- Do not tell the database to
actually create the foreign key, just declare it in the metadata. This is
for when you want to document a relationship but don’t want the DB to
actually enforce this. This is typically a wise thing to do when you have,
say a gigarecord of flux/density pairs and only several thousand metadata
records -- you may want to update the latter without having to tear down
the former.

∙ source (unicode string; defaults to <Undefined>) -- Comma- separated
list of local columns corresponding to the foreign key. No sanity checks
are performed here.

Element group

A group is a collection of columns, parameters and other groups with a dash of
metadata.

Within a group, you can refer to columns or params of the enclosing table by
their names. Nothing outside of the enclosing table can be part of a group.

Rather than referring to params, you can also embed them into a group; they
will then not be present in the embedding table.

26

Groups may contain groups.

One application for this is grouping input keys for the form renderer. For such
groups, you probably want to give the label property (and possibly cssClass).

May occur in Element inputTable, Element outputTable, Element table, Element
condDesc.

Atomic Children

∙ description (whitespace normalized unicode string; defaults to None) --
A short (one-line) description of the group

∙ name (a column name within an SQL table. These have to match
[A-Za-z_][A-Za-z0-9_]*$. In a desperate pinch, you can generate delim-
ited identifiers (that can contain anything) by prefixing the name with
’quoted/’ (but you cannot use rowmakers to fill such tables).; defaults to
None) -- Name of the column (must be SQL-valid for onDisk tables)

∙ ucd (unicode string; defaults to None) -- The UCD of the group

∙ utype (unicode string; defaults to None) -- A utype for the group

Structure Children

∙ columnRefs (contains Element columnRef and may be repeated zero or
more times) -- References to table columns belonging to this group

∙ groups (contains an instance of the embedding element and may be re-
peated zero or more times) -- Sub-groups of this group (names are still
referenced from the enclosing table)

∙ paramRefs (contains Element paramRef and may be repeated zero or more
times) -- Names of table parameters belonging to this group

∙ params (contains Element param and may be repeated zero or more times)
-- Immediate param elements for this group (use paramref to reference
params defined in the parent table)

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

27

Element httpUpload

An upload going with a URL.

May occur in Element url.

Atomic Children

∙ Character content of the element (defaulting to ”) -- Inline data to be
uploaded (conflicts with source)

∙ fileName (unicode string; defaults to None) -- Remote file name for the
uploaded file.

∙ name (unicode string; defaults to <Undefined>) -- Name of the upload
parameter

∙ source (unicode string; defaults to <Not given/empty>) -- Path to a file
containing the data to be uploaded.

Element ignoreOn

A condition on a row that, if true, causes the row to be dropped.

Here, you can set bail to abort an import when the condition is met rather than
just dropping the row.

May occur in Element voTableGrammar, Element rowmaker, Element reGram-
mar, Element contextGrammar, Element columnGrammar, Element cdfHead-
erGrammar, Element fitsTableGrammar, Element rowsetGrammar, Element bi-
naryGrammar, Element fitsProdGrammar, Element pdsGrammar, Element cus-
tomGrammar, Element mySQLDumpGrammar, Element freeREGrammar, Ele-
ment dictlistGrammar, Element keyValueGrammar, Element csvGrammar, Ele-
ment embeddedGrammar, Element nullGrammar.

Atomic Children

∙ bail (boolean; defaults to ’False’) -- Abort when condition is met?

∙ name (unicode string; defaults to ’unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

28

Structure Children

∙ triggers (contains any of and,keyPresent,keyNull,keyIs,keyMissing,not and
may be repeated zero or more times) -- One or more conditions joined
by an implicit logical or. See Triggers for information on what can stand
here.

Element ignoreSources

A specification of sources to ignore.

Sources mentioned here are compared against the inputsDir-relative path of
sources generated by sources (cf. Element sources). If there is a match, the
corresponding source will not be processed.

You can get ignored files from various sources. If you give more than one source,
the set of ignored files is the union of the the individual sets.

May occur in Element sources.

Atomic Children

∙ fromdb (unicode string; defaults to None) -- A DB query to obtain a
set of sources to ignore; the select clause must select exactly one column
containing the source key.

∙ fromfile (unicode string; defaults to None) -- A name of a file containing
blacklisted source paths, one per line. Empty lines and lines beginning
with a hash are ignored.

∙ patterns (Zero or more unicode string-typed pattern elements; defaults
to u’[]’) -- Shell patterns to ignore. Slashes are treated like any other
character, i.e., patterns do not know about paths.

Element index

A description of an index in the database.

In real databases, indices may be fairly complex things; still, the most common
usage here will be to just index a single column:

<index columns="my_col"/>

29

To index over functions, use the character content; parentheses are added by
DaCHS, so don’t have them in the content. An explicit specification of the
index expression is also necessary to allow RE pattern matches using indices in
character columns (outside of the C locale). That would be:

<index columns="uri">uri text_pattern_ops</index>

(you still want to give columns so the metadata engine is aware of the index).
See section "Operator Classes and Operator Families" in the Postgres documen-
tation for details.

May occur in Element inputTable, Element outputTable, Element table.

Atomic Children

∙ cluster (boolean; defaults to ’False’) -- Cluster the table according to this
index?

∙ columns (Comma-separated list of strings; defaults to ”) -- Table columns
taking part in the index (must be given even if there is an expression build-
ing the index and mention all columns taking part in the index generated
by it

∙ Character content of the element (defaulting to ”) -- Raw SQL specifying
an expression the table should be indexed for. If not given, the expression
will be generated from columns (which is what you usually want).

∙ method (unicode string; defaults to None) -- The indexing method, like
an index type. In the 8.x, series of postgres, you need to set method=GIST
for indices over pgsphere columns; otherwise, you should not need to worry
about this.

∙ name (unicode string; defaults to <Undefined>) -- Name of the index
(defaults to something computed from columns; the name of the parent
table will be prepended in the DB)

Element inputDD

A data descriptor for defining a core’s input.

In contrast to normal data descriptors, InputDescriptors generate a con-
textGrammar to feed the table mentioned in the first make if no grammar
is given (this typically is the input table of the core). Conversely, if a con-
textGrammar is given but no make, a make with a table having params defined
by the contextGrammar’s inputKeys is automatically generated.

30

Attributes like auto, dependents, sources and the like probably make little sense
for input descriptors.

May occur in Element service.

Atomic Children

∙ auto (boolean; defaults to ’True’) -- Import this data set if not explicitly
mentioned on the command line?

∙ dependents (Zero or more unicode string-typed recreateAfter elements;
defaults to u’[]’) -- A data ID to recreate when this resource is remade;
use # syntax to reference in other RDs.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ updating (boolean; defaults to ’False’) -- Keep existing tables on im-
port? You usually want this False unless you have some kind of sources
management, e.g., via a sources ignore specification.

Structure Children

∙ grammar (contains one of keyValueGrammar, cdfHeaderGrammar, di-
rectGrammar, dictlistGrammar, freeREGrammar, voTableGrammar, cus-
tomGrammar, rowsetGrammar, fitsTableGrammar, csvGrammar, null-
Grammar, fitsProdGrammar, contextGrammar, columnGrammar, embed-
dedGrammar, binaryGrammar, pdsGrammar, reGrammar, mySQLDump-
Grammar) -- Grammar used to parse this data set.

∙ makes (contains Element make and may be repeated zero or more times)
-- Specification of a target table and the rowmaker to feed them.

∙ params (contains Element param and may be repeated zero or more times)
-- Param ("global columns") for this data (mostly for VOTable serializa-
tion).

∙ registration (contains Element publish (data)) -- A registration (to the
VO registry) of this data collection.

∙ rowmakers (contains Element rowmaker and may be repeated zero or more
times) -- Embedded build rules (usually rowmakers are defined toplevel)

∙ sources (contains Element sources) -- Specification of sources that should
be fed to the grammar.

∙ tables (contains Element table and may be repeated zero or more times)
-- Embedded table definitions (usually, tables are defined toplevel)

31

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element inputKey

A description of a piece of input.

Think of inputKeys as abstractions for input fields in forms, though they are
used for services not actually exposing HTML forms as well.

Some of the DDL-type attributes (e.g., references) only make sense here if
columns are being defined from the InputKey.

You can give a "defaultForForm" property on inputKeys to supply a string literal
default that will be pre-filled in the form renderer and is friends but not for other
renderers (like S*AP).

Properties evaluated:

∙ defaultForForm -- a value entered into form fields by default (be stingy
with those; while it’s nice to not have to set things presumably right for
almost everyone, having to delete stuff you don’t want over and over is
really annoying).

∙ adaptToRenderer -- a true boolean literal here causes the param to be
adapted for the renderer (e.g., float could become vizierexpr-float). You’ll
usually not want this, because the expressions are generally evaluated by
the database, and the condDescs do the adaptation themselves. This is
mainly for rare situations like file uploads in custom cores.

May occur in Element inputTable, Element contextGrammar, Element cond-
Desc, Element service, Element datalinkCore.

Atomic Children

∙ Character content of the element (defaulting to <Not given/empty>) --
The value of parameter. It is parsed according to the param’s type using
the default parser for the type VOTable tabledata.

32

∙ description (whitespace normalized unicode string; defaults to ”) -- A
short (one-line) description of the values in this column.

∙ displayHint (Display hint; defaults to ”) -- Suggested presentation; the
format is <kw>=<value>{,<kw>=<value>}, where what is interpreted
depends on the output format. See, e.g., documentation on HTML ren-
derers and the formatter child of outputFields.

∙ fixup (unicode string; defaults to None) -- A python expression the
value of which will replace this column’s value on database reads.
Write a ___ to access the original value. You can use macros
for the embedding table. This is for, e.g., simple URL generation
(fixup="’internallink{/this/svc}’+___"). It will only kick in when tu-
ples are deserialized from the database, i.e., not for values taken from
tables in memory.

∙ inputUnit (unicode string; defaults to None) -- Override unit of the table
column with this.

∙ multiplicity (unicode string; defaults to None) -- Set this to single to have
an atomic value (chosen at random if multiple input values are given),
forced-single to have an atomic value and raise an exception if multiple
values come in, or multiple to receive lists. On the form renderer, this is
ignored, and the values are what nevow formal passes in. If not given, it
is single unless there is a values element with options, in which case it’s
multiple.

∙ name (a column name within an SQL table. These have to match
[A-Za-z_][A-Za-z0-9_]*$. In a desperate pinch, you can generate delim-
ited identifiers (that can contain anything) by prefixing the name with
’quoted/’ (but you cannot use rowmakers to fill such tables).; defaults to
<Undefined>) -- Name of the column

∙ note (unicode string; defaults to None) -- Reference to a note meta on
this table explaining more about this column

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ required (boolean; defaults to ’False’) -- Record becomes invalid when
this column is NULL

∙ showItems (integer; defaults to ’3’) -- Number of items to show at one
time on selection widgets.

∙ std (boolean; defaults to ’False’) -- Is this input key part of a standard
interface for registry purposes?

33

∙ tablehead (unicode string; defaults to None) -- Terse phrase to put into
table headers for this column

∙ type (a type name; the internal type system is similar to SQL’s with
some restrictions and extensions. The known atomic types include: uni-
code, pql-float, text, spoly, char, raw, vexpr-mjd, boolean, file, smallint,
vexpr-string, scircle, vexpr-float, vexpr- date, pql-string, real, spoint, pql-
int, timestamp, pql-date, date, integer, box, pql-upload, double precision,
sbox, bigint, time, bytea; defaults to ’real’) -- datatype for the column
(SQL-like type system)

∙ ucd (unicode string; defaults to ”) -- UCD of the column

∙ unit (unicode string; defaults to ”) -- Unit of the values

∙ utype (unicode string; defaults to None) -- utype for this column

∙ verbLevel (integer; defaults to ’20’) -- Minimal verbosity level at which
to include this column

∙ widgetFactory (unicode string; defaults to None) -- A python expression
for a custom widget factory for this input, e.g., ’Hidden’ or ’widgetFac-
tory(TextArea, rows=15, cols=30)’

∙ xtype (unicode string; defaults to None) -- VOTable xtype giving the
serialization form

Structure Children

∙ values (contains Element values) -- Specification of legal values

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

∙ stc (non-settable internally used value; defaults to None) -- Internally
used STC information for this column (do not assign to unless instructed
to do so)

∙ stcUtype (non-settable internally used value; defaults to None) -- Inter-
nally used STC information for this column (do not assign to)

34

Element job

Python code for use within execute.

The resource descriptor this runs at is available as rd, the execute definition
(having such attributes as title, job, plus any properties given in the RD) as
execDef.

Note that no I/O capturing takes place (that’s impossible since in general the
jobs run within the server). To have actual cron jobs, use execDef.spawn(["cmd",

"arg1"...]). This will send a mail on failed execution and also raise a Re-
portableError in that case.

In the frequent use case of a resdir-relative python program, you can use the
execDef.spawnPython(modulePath) function.

If you must stay within the server process, you can do something like:

mod = utils.loadPythonModule(rd.getAbsPath("bin/coverageplot.py"))

mod.makePlot()

-- in that way, your code can sit safely within the resource directory and you
still don’t have to manipulate the module path.

May occur in Element execute.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

35

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element lateEvents

An event stream played back by a mixin when the substrate is being finalised
(but before the early processing).

May occur in Element mixinDef.

Atomic Children

∙ doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

Element macDef

A macro definition within an RD.

The macro defined is available on the parent.

May occur in Element resource.

Atomic Children

∙ Character content of the element (defaulting to ”) -- Replacement text of
the macro

∙ name (unicode string; defaults to <Undefined>) -- Name the macro will
be available as

36

Element make

A build recipe for tables belonging to a data descriptor.

All makes belonging to a DD will be processed in the order in which they appear
in the file.

May occur in Element inputDD, Element data.

Atomic Children

∙ parmaker (id reference; defaults to <Not given/empty>) -- The parmaker
(i.e., mapping rules from grammar parameters to table parameters) for the
table being made. You will usually not give a parmaker.

∙ role (unicode string; defaults to None) -- The role of the embedded table
within the data set

∙ rowSource (One of: rows, parameters; defaults to ’rows’) -- Source for
the raw rows processed by this rowmaker.

∙ rowmaker (id reference; defaults to <Not given/empty>) -- The row-
maker (i.e., mapping rules from grammar keys to table columns) for the
table being made.

∙ table (id reference; defaults to <Undefined>) -- Reference to the table
to be embedded

Structure Children

∙ scripts (contains Element script and may be repeated zero or more times)
-- Code snippets attached to this object. See Scripting .

Element map

A mapping rule.

To specify the source of a mapping, you can either

∙ grab a value from what’s emitted by the grammar or defined using var via
the source attribute. The value given for source is converted to a python
value and stored.

∙ or give a python expression in the body. In that case, no further type
conversion will be attempted.

37

If neither source or a body is given, map uses the key attribute as its source
attribute.

The map rule generates a key/value pair in the result record.

May occur in Element rowmaker.

Atomic Children

∙ Character content of the element (defaulting to ”) -- A python expression
giving the value for key.

∙ key (unicode string; defaults to <Undefined>) -- Name of the column
the value is to end up in.

∙ nullExcs (unicode string; defaults to <Not given/empty>) -- Exceptions
that should be caught and cause the value to be NULL, separated by
commas.

∙ nullExpr (unicode string; defaults to <Not given/empty>) -- A python
expression for a value that is mapped to NULL (None). Equality is checked
after building the value, so this expression has to be of the column type.
Use map with the parseWithNull function to catch null values before type
conversion.

∙ source (unicode string; defaults to None) -- Source key name to convert
to column value (either a grammar key or a var).

Element mixinDef

A definition for a resource mixin.

Resource mixins are resource descriptor fragments typically rooted in tables
(though it’s conceivable that other structures could grow mixin attributes as
well).

They are used to define and implement certain behaviours components of the
DC software want to see:

∙ products want to be added into their table, and certain fields are required
within tables describing products

∙ tables containing positions need some basic machinery to support scs.

∙ siap needs quite a bunch of fields

38

Mixins consist of events that are played back on the structure mixing in before
anything else happens (much like original) and two procedure definitions, viz,
processEarly and processLate. These can access the structure that has the mixin
as substrate.

processEarly is called as part of the substrate’s completeElement method. pro-
cessLate is executed just before the parser exits. This is the place to fix up
anything that uses the table mixed in. Note, however, that you should be as
conservative as possible here -- you should think of DC structures as immutable
as long as possible.

Programmatically, you can check if a certain table mixes in something by calling
its mixesIn method.

Recursive application of mixins, even to seperate objects, will deadlock.

May occur in Element resource.

Atomic Children

∙ doc (unicode string; defaults to None) -- Documentation for this mixin

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ source (id reference; defaults to None) -- id of a stream to replay

Structure Children

∙ edits (contains Element EDIT and may be repeated zero or more times)
-- Changes to be performed on the events played back.

∙ events (contains Element events) -- Events to be played back into the
structure mixing this in at mixin time.

∙ lateEvents (contains Element lateEvents) -- Events to be played back into
the structure mixing this in at completion time.

∙ pars (contains Element mixinPar and may be repeated zero or more times)
-- Parameters available for this mixin.

∙ processEarly (contains Element processEarly) -- Code executed at element
fixup.

∙ processLate (contains Element processLate) -- Code executed resource
fixup.

39

∙ prunes (contains Element PRUNE and may be repeated zero or more
times) -- Conditions for removing items from the playback stream.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdId, Macro rdIdDotted, Macro schema, Macro test,
Macro today, Macro upper, Macro urlquote

Element mixinPar

A parameter definition for mixins.

The (optional) body provides a default for the parameter.

May occur in Element mixinDef.

Atomic Children

∙ Character content of the element (defaulting to <Not given/empty>) --
The default for the parameter. A __NULL__ here does not directly mean
None/NULL, but since the content will frequently end up in attributes,
it will ususally work as presetting None. An empty content means a non-
preset parameter, which must be filled in applications. The magic value
__EMPTY__ allows presetting an empty string.

∙ description (whitespace normalized unicode string; defaults to None) --
Some human-readable description of what the parameter is about

∙ key (unicode string; defaults to <Undefined>) -- The name of the pa-
rameter

∙ late (boolean; defaults to ’False’) -- Bind the name not at setup time but
at applying time. In rowmaker procedures, for example, this allows you
to refer to variables like vars or rowIter in the bindings.

Element option

A value for enumerated columns.

For presentation purposes, an option can have a title, defaulting to the option’s
value.

May occur in Element values.

40

Atomic Children

∙ Character content of the element (defaulting to ”) -- The value of the
option; this is what is used in, e.g., queries and the like.

∙ title (unicode string; defaults to <Not given/empty>) -- A Label for
presentation purposes; defaults to val.

Element outputField

A column for defining the output of a service.

It adds some attributes useful for rendering results, plus functionality specific to
certain cores.

The optional formatter overrides the standard formatting code in HTML (which
is based on units, ucds, and displayHints). You receive the item from the
database as data and must return a string or nevow stan. In addition to the
standard Functions available for row makers you have queryMeta and nevow’s
tags in T.

Here’s an example for generating a link to another service using this facility:

<outputField name="more"
select="array[centerAlpha,centerDelta] as more" tablehead="More"
description="More exposures near the center of this plate">

<formatter><![CDATA[
return T.a(href=base.makeSitePath("/lswscans/res/positions/q/form?"

"POS=%s,%s&SIZE=1&INTERSECT=OVERLAPS&cutoutSize=0.5"
"&__nevow_form__=genForm"%tuple(data)
))["More"]]]>

</formatter>

</outputField>

May occur in Element outputTable.

Atomic Children

∙ description (whitespace normalized unicode string; defaults to ”) -- A
short (one-line) description of the values in this column.

∙ displayHint (Display hint; defaults to ”) -- Suggested presentation; the
format is <kw>=<value>{,<kw>=<value>}, where what is interpreted
depends on the output format. See, e.g., documentation on HTML ren-
derers and the formatter child of outputFields.

41

∙ fixup (unicode string; defaults to None) -- A python expression the
value of which will replace this column’s value on database reads.
Write a ___ to access the original value. You can use macros
for the embedding table. This is for, e.g., simple URL generation
(fixup="’internallink{/this/svc}’+___"). It will only kick in when tu-
ples are deserialized from the database, i.e., not for values taken from
tables in memory.

∙ formatter (unicode string; defaults to None) -- Function body to render
this item to HTML.

∙ name (a column name within an SQL table. These have to match
[A-Za-z_][A-Za-z0-9_]*$. In a desperate pinch, you can generate delim-
ited identifiers (that can contain anything) by prefixing the name with
’quoted/’ (but you cannot use rowmakers to fill such tables).; defaults to
<Undefined>) -- Name of the column

∙ note (unicode string; defaults to None) -- Reference to a note meta on
this table explaining more about this column

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ required (boolean; defaults to ’False’) -- Record becomes invalid when
this column is NULL

∙ select (unicode string; defaults to <Undefined>) -- Use this SQL frag-
ment rather than field name in the select list of a DB based core.

∙ sets (Comma-separated list of strings; defaults to ”) -- Output sets this
field should be included in; ALL includes the field in all output sets.

∙ tablehead (unicode string; defaults to None) -- Terse phrase to put into
table headers for this column

∙ type (a type name; the internal type system is similar to SQL’s with
some restrictions and extensions. The known atomic types include: uni-
code, pql-float, text, spoly, char, raw, vexpr-mjd, boolean, file, smallint,
vexpr-string, scircle, vexpr-float, vexpr- date, pql-string, real, spoint, pql-
int, timestamp, pql-date, date, integer, box, pql-upload, double precision,
sbox, bigint, time, bytea; defaults to ’real’) -- datatype for the column
(SQL-like type system)

∙ ucd (unicode string; defaults to ”) -- UCD of the column

∙ unit (unicode string; defaults to ”) -- Unit of the values

42

∙ utype (unicode string; defaults to None) -- utype for this column

∙ verbLevel (integer; defaults to ’20’) -- Minimal verbosity level at which
to include this column

∙ wantsRow (boolean; defaults to None) -- Does formatter expect the
entire row rather than the colum value only?

∙ xtype (unicode string; defaults to None) -- VOTable xtype giving the
serialization form

Structure Children

∙ values (contains Element values) -- Specification of legal values

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

∙ stc (non-settable internally used value; defaults to None) -- Internally
used STC information for this column (do not assign to unless instructed
to do so)

∙ stcUtype (non-settable internally used value; defaults to None) -- Inter-
nally used STC information for this column (do not assign to)

Element outputTable

A table that has outputFields for columns.

May occur in Element resource, Element service.

Atomic Children

∙ adql (boolean or ’hidden’; defaults to ’False’) -- Should this table be
available for ADQL queries? In addition to True/False, this can also be
’hidden’ for tables readable from the TAP machinery but not published
in the metadata; this is useful for, e.g., tables contributing to a published
view. Warning: adql=hidden is incompatible with setting readProfiles
manually.

43

∙ allProfiles (Comma separated list of profile names.; defaults to u’admin,
msdemlei’) -- A (comma separated) list of profile names through which
the object can be written or administred.

∙ autoCols (Comma-separated list of strings; defaults to ”) -- Column
names obtained from fromTable; you can use shell patterns into the out-
put table’s parent table (in a table core, that’s the queried table; in a
service, it’s the core’s output table) here.

∙ dupePolicy (One of: drop, check, overwrite, dropOld; defaults to ’check’)
-- Handle duplicate rows with identical primary keys manually by raising
an error if existing and new rows are not identical (check), dropping the
new one (drop), updating the old one (overwrite), or dropping the old
one and inserting the new one (dropOld)?

∙ forceUnique (boolean; defaults to ’False’) -- Enforce dupe policy for
primary key (see dupePolicy)?

∙ A mixin reference, typically to support certain protocol. See Mixins.

∙ namePath (id reference; defaults to None) -- Reference to an element
tried to satisfy requests for names in id references of this element’s chil-
dren.

∙ onDisk (boolean; defaults to ’False’) -- Table in the database rather than
in memory?

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ primary (Comma-separated list of strings; defaults to ”) -- Comma sep-
arated names of columns making up the primary key.

∙ readProfiles (Comma separated list of profile names.; defaults to
u’trustedquery’) -- A (comma separated) list of profile names through
which the object can be read.

∙ system (boolean; defaults to ’False’) -- Is this a system table? If it is,
it will not be dropped on normal imports, and accesses to it will not be
logged.

∙ temporary (boolean; defaults to ’False’) -- If this is an onDisk table,
make it temporary? This is mostly useful for custom cores and such.

∙ verbLevel (integer; defaults to None) -- Copy over columns from
fromTable not more verbose than this.

44

∙ viewStatement (unicode string; defaults to None) -- A single SQL state-
ment to create a view. Setting this makes this table a view. The statement
will typically be something like CREATE VIEW \curtable AS (SELECT
\colNames FROM...).

Structure Children

∙ columns (contains Element outputField and may be repeated zero or more
times) -- Output fields for this table.

∙ foreignKeys (contains Element foreignKey and may be repeated zero or
more times) -- Foreign keys used in this table

∙ groups (contains Element group and may be repeated zero or more times)
-- Groups for columns and params of this table

∙ indices (contains Element index and may be repeated zero or more times)
-- Indices defined on this table

∙ params (contains Element param and may be repeated zero or more times)
-- Param ("global columns") for this table.

∙ registration (contains Element publish (data)) -- A registration (to the
VO registry) of this table.

∙ stc (contains Element stc and may be repeated zero or more times) --
STC-S definitions of coordinate systems.

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro curtable, Macro decapitalize, Macro getConfig, Macro get-
Param, Macro internallink, Macro magicEmpty, Macro metaString, Macro
nameForUCD, Macro nameForUCDs, Macro qName, Macro quote, Macro rdId,
Macro rdIdDotted, Macro schema, Macro tablename, Macro test, Macro today,
Macro upper, Macro urlquote

45

Element par

A parameter of a procedure definition.

Bodies of ProcPars are interpreted as python expressions, in which macros are
expanded in the context of the procedure application’s parent. If a body is
empty, the parameter has no default and has to be filled by the procedure
application.

May occur in Element setup.

Atomic Children

∙ Character content of the element (defaulting to <Not given/empty>)
-- The default for the parameter. The special value __NULL__ indi-
cates a NULL (python None) as usual. An empty content means a non-
preset parameter, which must be filled in applications. The magic value
__EMPTY__ allows presetting an empty string.

∙ description (whitespace normalized unicode string; defaults to None) --
Some human-readable description of what the parameter is about

∙ key (unicode string; defaults to <Undefined>) -- The name of the pa-
rameter

∙ late (boolean; defaults to ’False’) -- Bind the name not at setup time but
at applying time. In rowmaker procedures, for example, this allows you
to refer to variables like vars or rowIter in the bindings.

Element param

A table parameter.

This is like a column, except that it conceptually applies to all rows in the table.
In VOTables, params will be rendered as PARAMs.

While we validate the values passed using the DC default parsers, at least the
VOTable params will be literal copies of the string passed in.

You can obtain a parsed value from the value attribute.

Null value handling is a bit tricky with params. An empty param (like <param

name="x"/>) is always NULL (None in python). In order to allow setting NULL
even where syntactially something has to stand, we also turn any __NULL__
to None.

For floats, NaN will also yield NULLs. For integers, you can also use

46

<param name="x" type="integer"><values nullLiteral="-1"/>-
1</params>

For arrays, floats, and strings, the interpretation of values is undefined. Fol-
lowing VOTable practice, we do not tell empty strings and NULLs apart; for
internal usage, there is a little hack: __EMPTY__ as literal does set an empty
string. This is to allow defaulting of empty strings -- in VOTables, these cannot
be distinguished from "true" NULLs.

May occur in Element group, Element outputTable, Element table, Element
inputDD, Element data.

Atomic Children

∙ Character content of the element (defaulting to <Not given/empty>) --
The value of parameter. It is parsed according to the param’s type using
the default parser for the type VOTable tabledata.

∙ description (whitespace normalized unicode string; defaults to ”) -- A
short (one-line) description of the values in this column.

∙ displayHint (Display hint; defaults to ”) -- Suggested presentation; the
format is <kw>=<value>{,<kw>=<value>}, where what is interpreted
depends on the output format. See, e.g., documentation on HTML ren-
derers and the formatter child of outputFields.

∙ fixup (unicode string; defaults to None) -- A python expression the
value of which will replace this column’s value on database reads.
Write a ___ to access the original value. You can use macros
for the embedding table. This is for, e.g., simple URL generation
(fixup="’internallink{/this/svc}’+___"). It will only kick in when tu-
ples are deserialized from the database, i.e., not for values taken from
tables in memory.

∙ name (a column name within an SQL table. These have to match
[A-Za-z_][A-Za-z0-9_]*$. In a desperate pinch, you can generate delim-
ited identifiers (that can contain anything) by prefixing the name with
’quoted/’ (but you cannot use rowmakers to fill such tables).; defaults to
<Undefined>) -- Name of the column

∙ note (unicode string; defaults to None) -- Reference to a note meta on
this table explaining more about this column

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

47

∙ required (boolean; defaults to ’False’) -- Record becomes invalid when
this column is NULL

∙ tablehead (unicode string; defaults to None) -- Terse phrase to put into
table headers for this column

∙ type (a type name; the internal type system is similar to SQL’s with
some restrictions and extensions. The known atomic types include: uni-
code, pql-float, text, spoly, char, raw, vexpr-mjd, boolean, file, smallint,
vexpr-string, scircle, vexpr-float, vexpr- date, pql-string, real, spoint, pql-
int, timestamp, pql-date, date, integer, box, pql-upload, double precision,
sbox, bigint, time, bytea; defaults to ’real’) -- datatype for the column
(SQL-like type system)

∙ ucd (unicode string; defaults to ”) -- UCD of the column

∙ unit (unicode string; defaults to ”) -- Unit of the values

∙ utype (unicode string; defaults to None) -- utype for this column

∙ verbLevel (integer; defaults to ’20’) -- Minimal verbosity level at which
to include this column

∙ xtype (unicode string; defaults to None) -- VOTable xtype giving the
serialization form

Structure Children

∙ values (contains Element values) -- Specification of legal values

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

∙ stc (non-settable internally used value; defaults to None) -- Internally
used STC information for this column (do not assign to unless instructed
to do so)

∙ stcUtype (non-settable internally used value; defaults to None) -- Inter-
nally used STC information for this column (do not assign to)

48

Element paramRef

A reference from a group to a parameter within a table.

ParamReferences do not support qualified references, i.e., you can only give
simple names.

Also note that programmatically, you usually want to resolve ParamReferences
within the Table instance, not the table definition.

May occur in Element group.

Atomic Children

∙ key (unicode string; defaults to <Undefined>) -- The key (i.e., name) of
the referenced column or param.

∙ ucd (unicode string; defaults to None) -- The UCD of the group

∙ utype (unicode string; defaults to None) -- A utype for the group

Element phraseMaker

A procedure application for generating SQL expressions from input keys.

PhraseMaker code must yield SQL fragments that can occur in WHERE clauses,
i.e., boolean expressions (thus, they must be generator bodies).

The following names are available to them:

∙ inputKeys -- the list of input keys for the parent CondDesc
∙ inPars -- a dictionary mapping inputKey names to the values

provided by the user
∙ outPars -- a dictionary that is later used as the parameter

dictionary to the query.
∙ core -- the core to which this phrase maker’s condDesc belongs

To get the standard SQL a single key would generate, say:

yield base.getSQLForField(inputKeys[0], inPars, outPars)

To insert some value into outPars, do not simply use some key into outParse,
since, e.g., the condDesc might be used multiple times. Instead, use getSQLKey,
maybe like this:

49

ik = inputKeys[0]
yield "%s BETWEEN %%(%s)s AND %%(%s)s"%(ik.name,

base.getSQLKey(ik.name, inPars[ik.name]-10, outPars),

base.getSQLKey(ik.name, inPars[ik.name]+10, outPars))

getSQLKey will make sure unique names in outPars are chosen and enters the
values there.

May occur in Element condDesc.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

50

Element procDef

An embedded procedure.

Embedded procedures are python code fragments with some interface defined
by their type. They can occur at various places (which is called procedure appli-
cation generically), e.g., as row generators in grammars, as applys in rowmakers,
or as SQL phrase makers in condDescs.

They consist of the actual actual code and, optionally, definitions like the names-
pace setup, configuration parameters, or a documentation.

The procedure applications compile into python functions with special global
namespaces. The signatures of the functions are determined by the type at-
tribute.

ProcDefs are referred to by procedure applications using their id.

May occur in Element resource.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

51

Element processEarly

A code fragment run by the mixin machinery when the structure being worked
on is being finished.

Within processEarly, you can access:

∙ Access the structure the mixin is applied to as "substrate"

∙ The mixin parameters as "mixinPars"

∙ The parse context as "context"

(the context is particularly handy for context.resolveId)

May occur in Element mixinDef.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

52

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element processLate

A code fragment run by the mixin machinery when the parser parsing everything
exits.

Access the structure mixed in as "substrate", the root structure of the whole
parse tree as root, and the context that is just about finishing as context.

May occur in Element mixinDef.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

53

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element PRUNE

An active tag that lets you selectively delete children of the current object.

You give it regular expression-valued attributes; on the replay of the stream,
matching items and their children will not be replayed.

If you give more than one attribute, the result will be a conjunction of the
specified conditions.

This only works if the items to be matched are true XML attributes (i.e., not
written as children).

May occur in Element LFEED, Element LOOP, Element mixinDef, Element
FEED.

Element publish (data)

A request for registration of a data or table item.

This is much like publish for services, just for data and tables; since they have
no renderers, you can only have one register element per such element.

Data registrations may refer to published services that make their data available.

May occur in Element inputTable, Element outputTable, Element table, Element
inputDD, Element data.

Atomic Children

∙ services (list of id references (comma separated or in distinct elements);
defaults to []) -- A DC-internal reference to a service that lets users query
that within the data collection; tables with adql=True are automatically
declared to be servedBy the TAP service.

∙ sets (Comma-separated list of strings; defaults to ’ivo_managed’) -- A
comma-separated list of sets this data will be published in. To publish
data to the VO registry, just say ivo_managed here. Other sets probably
don’t make much sense right now. ivo_managed also is the default.

54

Element publish

A specification of how a service should be published.

This contains most of the metadata for what is an interface in registry speak.

May occur in Element service.

Atomic Children

∙ auxiliary (boolean; defaults to ’False’) -- Auxiliary publications are for
capabilities not intended to be picked up for all-VO queries, typically
because they are already registered with other services. This is mostly
used internally; you probably have no reason to touch it.

∙ render (unicode string; defaults to <Undefined>) -- The renderer the
publication will point at.

∙ service (id reference; defaults to <Not given/empty>) -- Reference for a
service actually implementing the capability corresponding to this publica-
tion. This is mainly when there is a vs:WebBrowser service accompanying
a VO protocol service, and this other service should be published in the
same resource record. See also the operator’s guide.

∙ sets (Comma-separated list of strings; defaults to ”) -- Comma- separated
list of sets this service will be published in. Predefined are: local=publish
on front page, ivo_managed=register with the VO registry. If you leave
it empty, ’local’ publication is assumed.

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

Element regSuite

A suite of regression tests.

May occur in Element resource.

Atomic Children

∙ sequential (boolean; defaults to ’False’) -- Set to true if the individual
tests need to be run in sequence.

∙ title (whitespace normalized unicode string; defaults to None) -- A short,
human-readable phrase describing what this suite is about.

55

Structure Children

∙ tests (contains Element regTest and may be repeated zero or more times)
-- Tests making up this suite

Element regTest

A regression test.

May occur in Element regSuite.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ tags (Comma-separated list of strings; defaults to ”) -- A list of (free-
form) tags for this test. Tagged tests are only run when the runner
is constructed with at least one of the tags given. This is mainly for
restricting tags to production or development servers.

∙ title (whitespace normalized unicode string; defaults to <Undefined>) --
A short, human-readable phrase describing what this test is exercising.

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

56

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

∙ url (contains Element url) -- The source from which to fetch the test data.

Element resource

A resource descriptor (RD); the root for all elements described here.

RDs collect all information about how to parse a particular source (like a col-
lection of FITS images, a catalogue, or whatever), about the database tables
the data ends up in, and the services used to access them.

Atomic Children

∙ allProfiles (Comma separated list of profile names.; defaults to u’admin,
msdemlei’) -- A (comma separated) list of profile names through which
the object can be written or administred.

∙ readProfiles (Comma separated list of profile names.; defaults to
u’trustedquery’) -- A (comma separated) list of profile names through
which the object can be read.

∙ require (unicode string; defaults to None) -- Import the named gavo
module (for when you need something registred)

∙ resdir (unicode string; defaults to None) -- Base directory for source files
and everything else belonging to the resource.

∙ schema (unicode string; defaults to <Undefined>) -- Database schema
for tables defined here. Follow the rule ’one schema, one RD’ if at all
possible. If two RDs share the same schema, the must generate exactly
the same permissions for that schema; this means, in particular, that if
one has an ADQL-published table, so must the other. In a nutshell: one
schema, one RD.

57

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Global condition descriptors for later reference

∙ cores (contains any of siapCutoutCore,scsCore,pythonCore,registryCor
e,dbCore,fancyQueryCore,fixedQueryCore,adqlCore,ssapProcessCore,debu
gCore,datalinkCore,ssapCore,uploadCore,productCore,computedCore,edit
Core,customCore,sdmCore,nullCore and may be repeated zero or more
times) -- Cores available in this resource.

∙ dds (contains Element data and may be repeated zero or more times) --
Descriptors for the data generated and/or published within this resource.

∙ jobs (contains Element execute and may be repeated zero or more times)
-- Jobs to be run while this RD is active.

∙ macDefs (contains Element macDef and may be repeated zero or more
times) -- User-defined macros available on this RD

∙ mixdefs (contains Element mixinDef and may be repeated zero or more
times) -- Mixin definitions (usually not for users)

∙ outputTables (contains Element outputTable and may be repeated zero
or more times) -- Canned output tables for later reference.

∙ procDefs (contains Element procDef and may be repeated zero or more
times) -- Procedure definintions (rowgens, rowmaker applys)

∙ resRecs (contains Element resRec and may be repeated zero or more
times) -- Non-service resources for the IVOA registry. They will be pub-
lished when gavo publish is run on the RD.

∙ rowmakers (contains Element rowmaker and may be repeated zero or more
times) -- Transformations for going from grammars to tables. If specified
in the RD, they must be referenced from make elements to become active.

∙ scripts (contains Element script and may be repeated zero or more times)
-- Code snippets attached to this object. See Scripting .

∙ services (contains Element service and may be repeated zero or more
times) -- Services exposing data from this resource.

∙ simpleView (contains Element simpleView) -- Definitions of views created
from natural joins

∙ tables (contains Element table and may be repeated zero or more times)
-- A table used or created by this resource

58

∙ tests (contains Element regSuite and may be repeated zero or more times)
-- Suites of regression tests connected to this RD.

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTcc0, Macro RSTccby, Macro RSTser-
vicelink, Macro RSTtable, Macro decapitalize, Macro getConfig, Macro in-
ternallink, Macro magicEmpty, Macro metaString, Macro quote, Macro rdId,
Macro rdIdDotted, Macro schema, Macro test, Macro today, Macro upper,
Macro urlquote

Element resRec

A resource for pure registration purposes.

A Resource does nothing; it is for registration of Authorities, Organizations,
Instruments, or whatever. Thus, they consist of metadata only (resources that
do something are services; they carry their own metadata and care for their
registration themselves.).

All resources must either have an id (which is used in the construction of their
IVORN), or you must give an identifier meta item.

You must further set the following meta items:

∙ resType specifying the kind of resource record. You should
not use this element to build resource records for services or
tables (use the normal elements, even if the actual resrouces
are external to DaCHS). resType can be registry, organization,
authority, deleted, or anything else for which registry.builders
has a handling class.

∙ title
∙ subject(s)
∙ description
∙ referenceURL

59

∙ creationDate

Additional meta keys (e.g., accessURL for a registry) may be required depending
on resType. See the registry session in the operator’s guide.

May occur in Element resource.

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdId, Macro rdIdDotted, Macro schema, Macro test,
Macro today, Macro upper, Macro urlquote

Element rowmaker

A definition of the mapping between grammar input and finished rows ready for
shipout.

Rowmakers consist of variables, procedures and mappings. They result in a
python callable doing the mapping.

RowmakerDefs double as macro packages for the expansion of various macros.
The standard macros will need to be quoted, the rowmaker macros above yield
python expressions.

Within map and var bodies as well as late apply pars and apply bodies, you can
refer to the grammar input as vars["name"] or, shorter @name.

To add output keys, use map or, in apply bodies, add keys to the result dictio-
nary.

May occur in Element resource, Element inputDD, Element data.

Atomic Children

∙ idmaps (Comma-separated list of strings; defaults to ”) -- List of column
names that are just "mapped through" (like map with key only); you can
use shell patterns to select multiple colums at once.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

60

∙ simplemaps (Comma-separated list of <identifer>:<identifier> pairs;
defaults to None) -- Abbreviated notation for <map source>; each pair
is destination:source

Structure Children

∙ apps (contains Element apply and may be repeated zero or more times)
-- Procedure applications.

∙ ignoreOn (contains Element ignoreOn) -- Conditions on the input record
coming from the grammar to cause the input record to be dropped by the
rowmaker, i.e., for this specific table. If you need to drop a row for all
tables being fed, use a trigger on the grammar.

∙ maps (contains Element map and may be repeated zero or more times)
-- Mapping rules.

∙ vars (contains Element var and may be repeated zero or more times) --
Definitions of intermediate variables.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro de-
capitalize, Macro dlMetaURI, Macro docField, Macro getConfig, Macro in-
putRelativePath, Macro inputSize, Macro internallink, Macro lastSourceEle-
ments, Macro magicEmpty, Macro metaString, Macro property, Macro qName,
Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath, Macro rows-
Made, Macro rowsProcessed, Macro schema, Macro sourceDate, Macro src-
stem, Macro standardPubDID, Macro test, Macro today, Macro upper, Macro
urlquote

Element script

A script, i.e., some executable item within a resource descriptor.

The content of scripts is given by their type -- usually, they are either python
scripts or SQL with special rules for breaking the script into individual statements
(which are basically like python’s).

The special language AC_SQL is like SQL, but execution errors are ignored.
This is not what you want for most data RDs (it’s intended for housekeeping
scripts).

See Scripting.

May occur in Element resource, Element make.

61

Atomic Children

∙ Character content of the element (defaulting to ”) -- The script body.

∙ lang (One of: python, AC_SQL, SQL; defaults to <Undefined>) -- Lan-
guage of the script.

∙ name (unicode string; defaults to ’anonymous’) -- A human- consumable
designation of the script.

∙ notify (boolean; defaults to ’True’) -- Send out a notification when run-
ning this script.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ type (One of: postCreation, newSource, beforeDrop, sourceDone, preIm-
port, preIndex; defaults to <Undefined>) -- Point of time at which script
is to run.

Element service

A service definition.

A service is a combination of a core and one or more renderers. They can be
published, and they carry the metadata published into the VO.

You can set the defaultSort property on the service to a name of an output
column to preselect a sort order. Note again that this will slow down responses
for all but the smallest tables unless there is an index on the corresponding
column.

Properties evaluated:

∙ defaultSort -- a key to sort on by default with the form renderer. This
differs from the dbCore’s sortKey in that this does not suppress the widget
itself, it just sets a default for its value. Don’t use this unless you have
to; the combination of sort and limit can have disastrous effects on the
run time of queries.

∙ votableRespectsOutputTable -- usually, VOTable output puts in all
columns from the underlying database table with low enough verbLevel
(essentially). When this property is "True" (case-sensitive), that’s not
done and only the service’s output table is evaluated. [Note that column
selection is such a mess it needs to be fixed before version 1.0 anyway]

May occur in Element resource.

62

Atomic Children

∙ allowed (Comma-separated list of strings; defaults to ”) -- Names of
renderers allowed on this service; leave emtpy to allow the form renderer
only.

∙ core (id reference; defaults to <Undefined>) -- The core that does the
computations for this service. Instead of a reference, you can use an
immediate element of some registred core.

∙ customPage (unicode string; defaults to None) -- resdir-relative path to
custom page code. It is used by the ’custom’ renderer

∙ defaultRenderer (unicode string; defaults to None) -- A name of a ren-
derer used when none is provided in the URL (lets you have shorter URLs).

∙ limitTo (unicode string; defaults to None) -- Limit access to the group
given; the empty default disables access control.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ customDFs (contains Element customDF and may be repeated zero or
more times) -- Custom data functions for use in custom templates.

∙ customRFs (contains Element customRF and may be repeated zero or
more times) -- Custom render functions for use in custom templates.

∙ inputDD (contains Element inputDD) -- A data descriptor for obtaining
the core’s input, usually based on a contextGrammar. For many cores
(e.g., DBCores), you do not want to give this but rather want to let
service figure this out from the core.

∙ outputTable (contains Element outputTable) -- The output fields of this
service.

∙ publications (contains Element publish and may be repeated zero or more
times) -- Sets and renderers this service is published with.

∙ serviceKeys (contains Element inputKey and may be repeated zero or
more times) -- Input widgets for processing by the service, e.g. output
sets.

63

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

∙ template (mapping; the value is the element content, the key is in the
’key’ (or, equivalently, key) attribute) -- Custom nevow templates for this
service; use key "form" to replace the Form renderer’s standard template.
Start the path with two slashes to access system templates.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdId, Macro rdIdDotted, Macro schema, Macro ta-
blesForTAP, Macro test, Macro today, Macro upper, Macro urlquote

Element setup

Prescriptions for setting up a namespace for a procedure application.

You can add names to this namespace you using par(ameter)s. If a parameter
has no default and an procedure application does not provide them, an error is
raised.

You can also add names by providing a code attribute containing a python
function body in code. Within, the parameters are available. The procedure
application’s parent can be accessed as parent. All names you define in the code
are available as globals to the procedure body.

Caution: Macros are expanded within the code; this means you need double
backslashes if you want a single backslash in python code.

May occur in Element iterator, Element rowfilter, Element apply, Element
procDef, Element job, Element processLate, Element dataFormatter, Element
regTest, Element coreProc, Element dataFunction, Element sourceFields, Ele-
ment metaMaker, Element phraseMaker, Element descriptorGenerator, Element
processEarly.

64

Atomic Children

∙ codeFrags (Zero or more unicode string-typed code elements; defaults to
u’[]’) -- Python function bodies setting globals for the function application.
Macros are expanded in the context of the procedure’s parent.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ pars (contains Element par and may be repeated zero or more times) --
Names to add to the procedure’s global namespace.

Element simpleView

A simple way to define a view over some tables.

To define a view in this way, you add fieldRef elements, giving table ids and
column names. The view will be a natural join of all tables involved.

For more complex views, use a normal table with a viewStatement.

These elements can be referred to like normal tables (internally, they are replaced
by TableDefs when they are complete).

May occur in Element resource.

Structure Children

∙ colRefs (contains Element columnRef and may be repeated zero or more
times) -- References to the fields making up the natural join of the simple
view.

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

Element sources

A Specification of a data descriptor’s inputs.

May occur in Element inputDD, Element data.

65

Atomic Children

∙ Character content of the element (defaulting to ”) -- A single file name
(this is for convenience)

∙ items (Zero or more unicode string-typed item elements; defaults to u’[]’)
-- String literals to pass to grammars. In contrast to patterns, they are not
interpreted as file names but passed to the grammar verbatim. Normal
grammars do not like this. It is mainly intended for use with custom or
null grammars.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ patterns (Zero or more unicode string-typed pattern elements; defaults
to u’[]’) -- Paths to the source files. You can use shell patterns here.

∙ recurse (boolean; defaults to ’False’) -- Search for pattern(s) recursively
in their directory part(s)?

Structure Children

∙ ignoredSources (contains Element ignoreSources) -- Specification of
sources that should not be processed although they match patterns. Typ-
ically used in update-type data descriptors.

Element stc

A definition of a space-time coordinate system using STC-S.

May occur in Element inputTable, Element outputTable, Element table.

Atomic Children

∙ Character content of the element (defaulting to ”) -- An STC-S string
with column references (using quote syntax) instead of values

Element table

A definition of a table, both on-disk and internal.

Some attributes are ignored for the in-memory tables, e.g., roles or adql.

May occur in Element resource, Element inputDD, Element data.

66

Atomic Children

∙ adql (boolean or ’hidden’; defaults to ’False’) -- Should this table be
available for ADQL queries? In addition to True/False, this can also be
’hidden’ for tables readable from the TAP machinery but not published
in the metadata; this is useful for, e.g., tables contributing to a published
view. Warning: adql=hidden is incompatible with setting readProfiles
manually.

∙ allProfiles (Comma separated list of profile names.; defaults to u’admin,
msdemlei’) -- A (comma separated) list of profile names through which
the object can be written or administred.

∙ dupePolicy (One of: drop, check, overwrite, dropOld; defaults to ’check’)
-- Handle duplicate rows with identical primary keys manually by raising
an error if existing and new rows are not identical (check), dropping the
new one (drop), updating the old one (overwrite), or dropping the old
one and inserting the new one (dropOld)?

∙ forceUnique (boolean; defaults to ’False’) -- Enforce dupe policy for
primary key (see dupePolicy)?

∙ A mixin reference, typically to support certain protocol. See Mixins.

∙ namePath (id reference; defaults to None) -- Reference to an element
tried to satisfy requests for names in id references of this element’s chil-
dren.

∙ onDisk (boolean; defaults to ’False’) -- Table in the database rather than
in memory?

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ primary (Comma-separated list of strings; defaults to ”) -- Comma sep-
arated names of columns making up the primary key.

∙ readProfiles (Comma separated list of profile names.; defaults to
u’trustedquery’) -- A (comma separated) list of profile names through
which the object can be read.

∙ system (boolean; defaults to ’False’) -- Is this a system table? If it is,
it will not be dropped on normal imports, and accesses to it will not be
logged.

∙ temporary (boolean; defaults to ’False’) -- If this is an onDisk table,
make it temporary? This is mostly useful for custom cores and such.

67

∙ viewStatement (unicode string; defaults to None) -- A single SQL state-
ment to create a view. Setting this makes this table a view. The statement
will typically be something like CREATE VIEW \curtable AS (SELECT
\colNames FROM...).

Structure Children

∙ columns (contains Element column and may be repeated zero or more
times) -- Columns making up this table.

∙ foreignKeys (contains Element foreignKey and may be repeated zero or
more times) -- Foreign keys used in this table

∙ groups (contains Element group and may be repeated zero or more times)
-- Groups for columns and params of this table

∙ indices (contains Element index and may be repeated zero or more times)
-- Indices defined on this table

∙ params (contains Element param and may be repeated zero or more times)
-- Param ("global columns") for this table.

∙ registration (contains Element publish (data)) -- A registration (to the
VO registry) of this table.

∙ stc (contains Element stc and may be repeated zero or more times) --
STC-S definitions of coordinate systems.

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro curtable, Macro decapitalize, Macro getConfig, Macro get-
Param, Macro internallink, Macro magicEmpty, Macro metaString, Macro
nameForUCD, Macro nameForUCDs, Macro qName, Macro quote, Macro rdId,
Macro rdIdDotted, Macro schema, Macro tablename, Macro test, Macro today,
Macro upper, Macro urlquote

68

Element url

A source document for a regression test.

As string URLs, they specify where to get data from, but the additionally let
you specify uploads, authentication, headers and http methods, while at the
same time saving you manual escaping of parameters.

The bodies is the path to run the test against. This is interpreted as relative
to the RD if there’s no leading slash, relative to the server if there’s a leading
slash, and absolute if there’s a scheme.

The attributes are translated to parameters, except for a few pre-defined names.
If you actually need those as URL parameters, should at us and we’ll provide
some way of escaping these.

We don’t actually parse the URLs coming in here. GET parameters are appended
with a & if there’s a ? in the existing URL, with a ? if not. Again, shout if this
is too dumb for you (but urlparse really isn’t all that robust either...)

May occur in Element regTest.

Atomic Children

∙ Character content of the element (defaulting to ”) -- Base for URL gen-
eration; embedded whitespace will be removed, so you’re free to break
those whereever you like.

∙ httpAuthKey (unicode string; defaults to <Not given/empty>) -- A key
into ~/.gavo/test.creds to find a user/password pair for this request.

∙ httpHonorRedirects (boolean; defaults to ’False’) -- Follow 30x redirects
instead of just using status, headers, and payload of the initial request.

∙ httpMethod (unicode string; defaults to ’GET’) -- Request method; usu-
ally one of GET or POST

∙ parSet (One of: form; defaults to <Not given/empty>) -- Preselect
a default parameter set; form gives what our framework adds to form
queries.

∙ postPayload (unicode string; defaults to <Not given/empty>) -- Path to
a file containing material that should go with a POST request (conflicts
with additional parameters).

69

Structure Children

∙ uploads (contains Element httpUpload and may be repeated zero or
more times) -- HTTP uploads to add to request (must have http-
Method="POST")

Other Children

∙ value (mapping; the value is the element content, the key is in the ’key’
(or, equivalently, key) attribute) -- Additional HTTP headers to pass.

∙ (ignore)

Element values

Information on a column’s values, in particular its domain.

This is quite like the values element in a VOTable. In particular, to accomodate
VOTable usage, we require nullLiteral to be a valid literal for the parent’s type.

Note that DaCHS does not validate for contraints from values on table import.
This is mainly because before gavo values has run, values may not represent the
new dataset in semiautomatic values.

With HTTP parameters, values validation does take place (but again, that’s
mostly not too helpful because there are query languages sitting in between
most of the time).

Hence, the main utility of values is metadata declaration, both in the form
render (where they become placeholders) and in datalink (where they are com-
municated as VOTable values).

May occur in Element param, Element column, Element outputField, Element
inputKey.

Atomic Children

∙ default (unicode string; defaults to None) -- A default value (currently
only used for options).

∙ fromdb (unicode string; defaults to None) -- A query fragment returning
just one column to fill options from (will add to options if some are given).
Do not write SELECT or anything, just the column name and the where
clause.

70

∙ max (unicode string; defaults to None) -- Maximum acceptable value as
a datatype literal

∙ min (unicode string; defaults to None) -- Minimum acceptable value as
a datatype literal

∙ multiOk (boolean; defaults to ’False’) -- Deprecated, use multiplic-
ity=multiple instead.

∙ nullLiteral (unicode string; defaults to None) -- An appropriate value
representing a NULL for this column in VOTables and similar places. You
usually should only set it for integer types and chars. Note that rowmakers
make no use of this nullLiteral, i.e., you can and should choose null values
independently of your source. Again, for reals, floats and (mostly) text
you probably do not want to do this.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ options (contains Element option and may be repeated zero or more times)
-- List of acceptable values (if set)

Element var

A definition of a rowmaker variable.

It consists of a name and a python expression, including function calls. The
variables are entered into the input row coming from the grammar.

var elements are evaluated before apply elements, in the sequence they are in
the RD. You can refer to keys defined by vars already evaluated in the usual
@key manner.

May occur in Element rowmaker.

Atomic Children

∙ Character content of the element (defaulting to ”) -- A python expression
giving the value for key.

∙ key (unicode string; defaults to <Undefined>) -- Name of the column
the value is to end up in.

71

∙ nullExcs (unicode string; defaults to <Not given/empty>) -- Exceptions
that should be caught and cause the value to be NULL, separated by
commas.

∙ nullExpr (unicode string; defaults to <Not given/empty>) -- A python
expression for a value that is mapped to NULL (None). Equality is checked
after building the value, so this expression has to be of the column type.
Use map with the parseWithNull function to catch null values before type
conversion.

∙ source (unicode string; defaults to None) -- Source key name to convert
to column value (either a grammar key or a var).

Active Tags
The following tags are "active", which means that they do not directly contribute
to the RD parsed. Instead they define, replay, or edit streams of elements.

Element FEED

An active tag that takes an event stream and replays the events, possibly filling
variables.

This element supports arbitrary attributes with unicode values. These values
are available as macros for replayed values.

Atomic Children

∙ source (id reference; defaults to None) -- id of a stream to replay

Structure Children

∙ edits (contains Element EDIT and may be repeated zero or more times)
-- Changes to be performed on the events played back.

∙ events (contains Element events) -- Alternatively to source, an XML frag-
ment to be replayed

∙ prunes (contains Element PRUNE and may be repeated zero or more
times) -- Conditions for removing items from the playback stream.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdId, Macro rdIdDotted, Macro schema, Macro test,
Macro today, Macro upper, Macro urlquote

72

Element LFEED

A ReplayedEventStream that does not expand active tag macros.

You only want this when embedding a stream into another stream that could
want to expand the embedded macros.

Atomic Children

∙ source (id reference; defaults to None) -- id of a stream to replay

Structure Children

∙ edits (contains Element EDIT and may be repeated zero or more times)
-- Changes to be performed on the events played back.

∙ events (contains Element events) -- Alternatively to source, an XML frag-
ment to be replayed

∙ prunes (contains Element PRUNE and may be repeated zero or more
times) -- Conditions for removing items from the playback stream.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdId, Macro rdIdDotted, Macro schema, Macro test,
Macro today, Macro upper, Macro urlquote

Element LOOP

An active tag that replays a feed several times, each time with different values.

Atomic Children

∙ codeItems (unicode string; defaults to None) -- A python generator body
that yields dictionaries that are then used as loop items. You can access
the parse context as the context variable in these code snippets.

∙ csvItems (unicode string; defaults to None) -- The items to loop over, in
CSV-with-labels format.

∙ listItems (unicode string; defaults to None) -- The items to loop over,
as space-separated single items. Each item will show up once, as ’item’
macro.

∙ source (id reference; defaults to None) -- id of a stream to replay

73

Structure Children

∙ edits (contains Element EDIT and may be repeated zero or more times)
-- Changes to be performed on the events played back.

∙ events (contains Element events) -- Alternatively to source, an XML frag-
ment to be replayed

∙ prunes (contains Element PRUNE and may be repeated zero or more
times) -- Conditions for removing items from the playback stream.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro decapi-
talize, Macro getConfig, Macro internallink, Macro magicEmpty, Macro metaS-
tring, Macro quote, Macro rdId, Macro rdIdDotted, Macro schema, Macro test,
Macro today, Macro upper, Macro urlquote

Element NXSTREAM

An event stream that records events, not expanding active tags.

Normal event streams expand embedded active tags in place. This is frequently
what you want, but it means that you cannot, e.g., fill in loop variables through
stream macros.

With non-expanded streams, you can do that:

<NXSTREAM id="cols">
<LOOP listItems="\stuff">

<events>
<column name="\item"/>

</events>
</LOOP>

</NXSTREAM>
<table id="foo">

<FEED source="cols" stuff="x y"/>

</table>

Note that the normal innermost-only rule for macro expansions within active tags
does not apply for NXSTREAMS. Macros expanded by a replayed NXSTREAM
will be re-expanded by the next active tag that sees them (this is allow embedded
active tags to use macros; you need to double-escape macros for them, of
course).

Atomic Children

∙ doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

74

Element STREAM

An active tag that records events as they come in.

Their only direct effect is to leave a trace in the parser’s id map. The resulting
event stream can be played back later.

Atomic Children

∙ doc (unicode string; defaults to None) -- A description of this stream
(should be restructured text).

Grammars Available
The following elements are all grammar related. All grammar elements can
occur in data descriptors.

Element binaryGrammar

A grammar that builds rowdicts from binary data.

The grammar expects the input to be in fixed-length records. the actual speci-
fication of the fields is done via a binaryRecordDef element.

Atomic Children

∙ armor (One of: fortran; defaults to None) -- Record armoring; by default
it’s None meaning the data was dumped to the file sequentially. Set it to
fortran for fortran unformatted files (4 byte length before and after the
payload).

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ skipBytes (integer; defaults to ’0’) -- Number of bytes to skip before
parsing records.

75

Structure Children

∙ fieldDefs (contains Element binaryRecordDef) -- Definition of the record.

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element binaryRecordDef

A definition of a binary record.

A binary records consists of a number of binary fields, each of which is defined
by a name and a format code. The format codes supported here are a subset
of what python’s struct module supports. The widths given below are for big,
little, and packed binfmts. For native (which is the default), it depends on your
platform.

∙ <number>s -- <number> characters making up a string

∙ b,B -- signed and unsigned byte (8 bit)

∙ h,H -- signed and unsigned short (16 bit)

76

∙ i,I -- signed and unsigned int (32 bit)

∙ q,Q -- signed and unsigned long (64 bit)

∙ f,d -- float and double.

The content of this element gives the record structure in the format
<name>(<code>){<whitespace><name>(<code>)} where <name> is a c-
style identifier.

May occur in Element binaryGrammar.

Atomic Children

∙ binfmt (One of: big, little, packed, native; defaults to ’native’) -- Binary
format of the input data; big and little stand for msb first and lsb first,
and packed is like native except no alignment takes place.

∙ Character content of the element (defaulting to ”) -- The enumeration of
the record fields.

Element cdfHeaderGrammar

A grammar that returns the header dictionary of a CDF file (global attributes).

This grammar yields a single dictionary per file, which corresponds to the global
attributes. The values in this dictionary may have complex structure; in partic-
ular, sequences are returned as lists.

To use this grammar, additional software is required that (by 2014) is not
packaged for Debian. See http://spacepy.lanl.gov/doc/install_linux.html for
installation instructions. Note that you must install the CDF library itself as
described further down on that page; the default installation instructions do
not install the library in a public place, so if you use these, you’ll have to set
CDF_LIB to the right value, too.

Atomic Children

∙ autoAtomize (boolean; defaults to ’False’) -- Unpack 1-element lists to
their first value.

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

77

http://spacepy.lanl.gov/doc/install_linux.html

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ mapKeys (contains Element mapKeys) -- Prescription for how to map
labels keys to grammar dictionary keys

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element columnGrammar

A grammar that builds rowdicts out of character index ranges.

This works by using the colRanges attribute like <col key="mag">12-
16</col>, which will take the characters 12 through 16 inclusive from each
input line to build the input column mag.

As a shortcut, you can also use the colDefs attribute; it contains a string of the
form {<key>:<range>}, i.e., a whitespace-separated list of colon-separated
items of key and range as accepted by cols, e.g.:

<colDefs>
a: 3-4
_u: 7

</colDefs>

78

Atomic Children

∙ colDefs (unicode string; defaults to None) -- Shortcut way of defining
cols

∙ commentIntroducer (unicode string; defaults to <Not given/empty>)
-- A character sequence that, when found at the beginning of a line makes
this line ignored

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ gunzip (boolean; defaults to ’False’) -- Unzip sources while reading?
(Deprecated, use preFilter=’zcat’)

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ preFilter (unicode string; defaults to None) -- Shell command to pipe the
input through before passing it on to the grammar. Classical examples
include zcat or bzcat, but you can commit arbitrary shell atrocities here.

∙ topIgnoredLines (integer; defaults to ’0’) -- Skip this many lines at the
top of each source file.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ col (mapping; the value is the element content, the key is in the ’key’ (or,
equivalently, key) attribute) -- Mapping of source keys to column ranges.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

79

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element contextGrammar

A grammar for web inputs.

These are almost exclusively in InputDDs. They hold InputKeys defining what
they take from the context.

For DBCores, the InputDDs are generally defined implicitely via CondDescs.
Thus, only for other cores will you ever need to bother with ContextGrammars
(unless you’re going for special effects).

The source tokens for context grammars are dictionaries; these are either typed
dictionaries from nevow, where the values usually are atomic, or, preferably, the
dictionaries of lists from request.args.

ContextGrammars only yield rows if there’s a rowKey defined. In that case, an
outer join of all other parameters is returned; with rowKey defined, the input
keys are obtained from the table’s columns.

In normal usage, they just yield a single parameter row, corresponding to the
source dictionary possibly completed with defaults, where non-requried input
keys get None defaults where not given. Missing required parameters yield
errors.

Since most VO protocols require case-insensitive matching of parameter names,
matching of input key names and the keys of the input dictionary is attempted
first literally, then disregarding case.

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ inputTable (id reference; defaults to <Not given/empty>) -- The table
that is to be built using this grammar

80

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ rejectExtras (boolean; defaults to ’False’) -- If true, the grammar will
reject extra input parameters. Note that for form- based services, there
are extra parameters not declared in the services’ input tables. Right now,
contextGrammar does not ignore those.

∙ rowKey (unicode string; defaults to <Not given/empty>) -- The name
of a key that is used to generate rows from the input

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ inputKeys (contains Element inputKey and may be repeated zero or more
times) -- Input keys this context grammar should parse. These must not
be given if there is an input table defined.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

81

Element csvGrammar

A grammar that uses python’s csv module to parse files.

Note that these grammars by default interpret the first line of the input file as
the column names. When your files don’t follow that convention, you must give
names (as in names=’raj2000, dej2000, magV’), or you’ll lose the first line and
have silly column names.

CSVGrammars currently do not support non-ASCII inputs. Contact the authors
if you need that.

Atomic Children

∙ delimiter (unicode string; defaults to ’,’) -- CSV delimiter

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ gunzip (boolean; defaults to ’False’) -- Unzip sources while reading?
(Deprecated, use preFilter=’zcat’)

∙ names (Comma-separated list of strings; defaults to None) -- Names for
the parsed fields, in sequence of the comma separated values. The default
is to read the field names from the first line of the csv file. You can use
macros here, e.g., \colNames{someTable}.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ preFilter (unicode string; defaults to None) -- Shell command to pipe the
input through before passing it on to the grammar. Classical examples
include zcat or bzcat, but you can commit arbitrary shell atrocities here.

∙ strip (boolean; defaults to ’False’) -- If True, whitespace immediately
following a delimiter is ignored.

∙ topIgnoredLines (integer; defaults to ’0’) -- Skip this many lines at the
top of each source file.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

82

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element customGrammar

A Grammar with a user-defined row iterator taken from a module.

See the Writing Custom Grammars (in the reference manual) for details.

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ isDispatching (boolean; defaults to ’False’) -- Is this a dispatching gram-
mar (i.e., does the row iterator return pairs of role, row rather than only
rows)?

∙ module (unicode string; defaults to <Undefined>) -- Path to module
containing your row iterator.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

83

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element dictlistGrammar

A grammar that "parses" from lists of dicts.

Actually, it will just return the dicts as they are passed. This is mostly useful
internally, though it might come in handy in custom code.

Atomic Children

∙ asPars (boolean; defaults to ’False’) -- Just return the first item of the
list as parameters row and exit?

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

84

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element directGrammar

A user-defined external grammar.

See the separate document on user-defined code on more on direct grammars.

Also note the program gavomkboost that can help you generate core for the C
boosters used by direct grammars.

Atomic Children

∙ autoNull (unicode string; defaults to None) -- Use this string as general
NULL value (when reading from plain text).

∙ cBooster (unicode string; defaults to <Undefined>) -- resdir- relative
path to the booster C source.

85

∙ customFlags (unicode string; defaults to ”) -- Pass these flags to the C
compiler when building the booster.

∙ extension (integer; defaults to ’1’) -- For FITS table boosters, get the
table from this extension.

∙ gzippedInput (boolean; defaults to ’False’) -- Pipe gzip before booster?
(will not work for FITS)

∙ ignoreBadRecords (boolean; defaults to ’False’) -- Let booster ignore
invalid records?

∙ preFilter (unicode string; defaults to None) -- Pipe input through this
program before handing it to the booster; this string is shell-expanded
(will not work for FITS).

∙ recordSize (integer; defaults to ’4000’) -- For bin boosters, read this many
bytes to make up a record; for line-based boosters, this is the maximum
length of an input line.

∙ splitChar (unicode string; defaults to ’|’) -- For split boosters, use this as
the separator.

∙ type (One of: bin, fits, col, split; defaults to ’col’) -- Make code for
a booster parsing by column indices (col), by splitting along separators
(split), by reading fixed-length binary records (bin), for from FITS binary
tables (fits).

Structure Children

∙ mapKeys (contains Element mapKeys) -- For a FITS booster, map DB
table column names to FITS column names (e.g., if the FITS table name
flx is to end up in the DB column flux, say flux:flx).

Element embeddedGrammar

A Grammar defined by a code application.

To define this grammar, write a ProcApp iterator leading to code yielding row
dictionaries. The grammar input is available as self.sourceToken; for normal
grammars within data elements, that would be a fully qualified file name.

The proc app body actually is the iterRows method of a row iterator (see API
docs).

This could look like this, when the grammar input is some iterable:

86

<embeddedGrammar>
<iterator>

<setup>
<code>

testData = "a"*1024
</code>

</setup>
<code>

for i in self.sourceToken:
yield {’index’: i, ’data’: testData}

</code>
</iterator>

</embeddedGrammar>

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ isDispatching (boolean; defaults to ’False’) -- Is this a dispatching gram-
mar (i.e., does the row iterator return pairs of role, row rather than only
rows)?

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ iterator (contains Element iterator) -- Code yielding row dictionaries

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

87

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element fitsProdGrammar

A grammar that returns FITS-headers as dictionaries.

This is the grammar you want when one FITS file corresponds to one row in
the destination table.

The keywords of the grammar record are the cards in the primary header (or
some other hdu using the same-named attribute). "-" in keywords is replaced
with an underscore for easier @-referencing. You can use a mapKeys element
to effect further name cosmetics.

This grammar should handle compressed FITS images transparently if set
qnd="False". This means that you will essentially get the readers from the
second extension for those even if you left hdu="0".

The original header is preserved as the value of the header_ key. This is mainly
intended for use WCS use, as in pywcs.WCS(@header_).

If you have more complex structures in your FITS files, you can get access to
the pyfits HDU using the hdusField attribute. With hdusField="_H", you could
say things like @_H[1].data[10][0] to get the first data item in the tenth row in
the second HDU.

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ hdu (integer; defaults to ’0’) -- Take the header from this HDU. You must
say qnd=’False’ for this to take effect.

∙ hdusField (unicode string; defaults to None) -- If set, the complete pyfits
HDU list for the FITS file is returned in this grammar field.

88

∙ maxHeaderBlocks (integer; defaults to ’40’) -- Stop looking for FITS
END cards and raise an error after this many blocks. You may need to
raise this for people dumping obscene amounts of data or history into
headers.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ qnd (boolean; defaults to ’True’) -- Use a hack to read the FITS header
more quickly. This only works for the primary HDU

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ mapKeys (contains Element mapKeys) -- Prescription for how to map
header keys to grammar dictionary keys

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

89

Element fitsTableGrammar

A grammar parsing from FITS tables.

fitsTableGrammar result in typed records, i.e., values normally come in the types
they are supposed to have. Of course, that won’t work for datetimes, STC-S
regions, and the like.

The keys of the result dictionaries are simpily the names given in the FITS.

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ hdu (integer; defaults to ’1’) -- Take the data from this extension (pri-
mary=0). Tabular data typically resides in the first extension.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,

90

Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element freeREGrammar

A grammar allowing "free" regular expressions to parse a document.

Basically, you give a rowProduction to match individual records in the document.
All matches of rowProduction will then be matched with parseRE, which in turn
must have named groups. The dictionary from named groups to their matches
makes up the input row.

For writing the parseRE, we recommend writing an element, using a CDATA con-
struct, and taking advantage of python’s "verbose" regular expressions. Here’s
an example:

<parseRE><![CDATA[(?xsm)^name::(?P<name>.*)
^query::(?P<query>.*)
^description::(?P<description>.*)\.\.

]]></parseRE>

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ ignoreJunk (boolean; defaults to ’False’) -- Ignore everything outside of
the row production

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ parseRE (unicode string; defaults to <Undefined>) -- RE containing
named groups matching a record

∙ rowProduction (unicode string; defaults to ’(?m)^.+$\n’) -- RE match-
ing a complete record.

∙ stripTokens (boolean; defaults to ’False’) -- Strip whitespace from result
tokens?

91

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element iterator

A definition of an iterator of a grammar.

The code defined here becomes the _iterRows method of a gram-
mar.common.RowIterator class. This means that you can access self.grammar
(the parent grammar; you can use this to transmit properties from the RD to
your function) and self.sourceToken (whatever gets passed to parse()).

May occur in Element embeddedGrammar.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

92

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element keyValueGrammar

A grammar to parse key-value pairs from files.

The default assumes one pair per line, with # comments and = as separating
character.

yieldPairs makes the grammar return an empty docdict and {"key":, "value":}
rowdicts.

Whitespace around key and value is ignored.

93

Atomic Children

∙ commentPattern (unicode string; defaults to ’(?m)#.*’) -- A regular
expression describing comments.

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ kvSeparators (unicode string; defaults to ’:=’) -- Characters accepted as
separators between key and value

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ pairSeparators (unicode string; defaults to ’n’) -- Characters accepted
as separators between pairs

∙ yieldPairs (boolean; defaults to ’False’) -- Yield key-value pairs instead
of complete records?

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ mapKeys (contains Element mapKeys) -- Mappings to rename the keys
coming from the source files. Use this, in particular, if the keys are not
valid python identifiers.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

94

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element mapKeys

Mapping of names, specified in long or short forms.

mapKeys is necessary in grammars like keyValueGrammar or fitsProdGrammar.
In these, the source files themselves give key names. Within the GAVO DC, keys
are required to be valid python identifiers (i.e., match [A-Za-z_][A-Za-z_0-9]*).
If keys coming in do not have this form, mapping can force proper names.

mapKeys could also be used to make incoming names more suitable for matching
with shell patterns (like in rowmaker idmaps).

May occur in Element cdfHeaderGrammar, Element directGrammar, Element
fitsProdGrammar, Element pdsGrammar, Element keyValueGrammar.

Atomic Children

∙ Character content of the element (defaulting to ”) -- Simple mappings in
the form<dest>:<src>{,<dest>:<src>}

Other Children

∙ map (mapping; the key is the element content, the value is in the ’key’
(or, equivalently, dest) attribute) -- Map source names given in content
to the name given in dest.

Element mySQLDumpGrammar

A grammar pulling information from MySQL dump files.

WARNING: This is a quick hack. If you want/need it, please contact the
authors.

At this point this is nothing but an ugly RE mess with lots of assumptions about
the dump file that’s easily fooled. Also, the entire dump file will be pulled into
memory.

95

Since grammar semantics cannot do anything else, this will always only iterate
over a single table. This currently is fixed to the first, but it’s conceivable to
make that selectable.

Database NULLs are already translated into Nones.

In other words: It might do for simple cases. If you have something else, improve
this or complain to the authors.

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ gunzip (boolean; defaults to ’False’) -- Unzip sources while reading?
(Deprecated, use preFilter=’zcat’)

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ preFilter (unicode string; defaults to None) -- Shell command to pipe the
input through before passing it on to the grammar. Classical examples
include zcat or bzcat, but you can commit arbitrary shell atrocities here.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

96

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element nullGrammar

A grammar that never returns any rows.

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

97

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element pdsGrammar

A grammar that returns labels of PDS documentes as rowdicts

PDS is the file format of the Planetary Data System; the labels are quite like,
but not quite like FITS headers.

Extra care needs to be taken here since the values in the rawdicts can be
complex objects (e.g., other labels). It’s likely that you will need constructs like
@IMAGE["KEY"].

Current versions of PyPDS also don’t parse the values. This is particularly
insiduous because general strings are marked with " in PDS. When mapping
those, you’ll probably want a @KEY.strip(’"’).

You’ll need PyPDS to use this; there’s no Debian package for that yet, so you’ll
have to do a source install from git://github.com/RyanBalfanz/PyPDS.git

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ mapKeys (contains Element mapKeys) -- Prescription for how to map
labels keys to grammar dictionary keys

98

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element reGrammar

A grammar that builds rowdicts from records and fields specified via REs sepa-
rating them.

There is also a simple facility for "cleaning up" records. This can be used to
remove standard shell-like comments; use recordCleaner="(?:#.*)?(.*)".

Atomic Children

∙ commentPat (unicode string; defaults to None) -- RE inter-record ma-
terial to be ignored (note: make this match the entire comment, or you’ll
get random mess from partly-matched comments. Use ’(?m)^#.*$’ for
beginning-of-line hash-comments.

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ fieldSep (unicode string; defaults to ’\s+’) -- RE for separating two fields
in a record.

∙ gunzip (boolean; defaults to ’False’) -- Unzip sources while reading?
(Deprecated, use preFilter=’zcat’)

99

∙ lax (boolean; defaults to ’False’) -- allow more or less fields in source
records than there are names

∙ names (Comma-separated list of strings; defaults to ”) -- Names for
the parsed fields, in matching sequence. You can use macros here, e.g.,
\colNames{someTable}.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ preFilter (unicode string; defaults to None) -- Shell command to pipe the
input through before passing it on to the grammar. Classical examples
include zcat or bzcat, but you can commit arbitrary shell atrocities here.

∙ recordCleaner (unicode string; defaults to None) -- A regular expression
matched against each record. The matched groups in this RE are joined
by blanks and used as the new pattern. This can be used for simple
cleaning jobs; However, records not matching recordCleaner are rejected.

∙ recordSep (unicode string; defaults to ’n’) -- RE for separating two
records in the source.

∙ stopPat (unicode string; defaults to None) -- Stop parsing when a record
matches this RE (this is for skipping non-data footers

∙ topIgnoredLines (integer; defaults to ’0’) -- Skip this many lines at the
top of each source file.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

100

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element rowfilter

A generator for rows coming from a grammar.

Rowfilters receive rows (i.e., dictionaries) as yielded by a grammar under the
name row. Additionally, the embedding row iterator is available under the name
rowIter.

Macros are expanded within the embedding grammar.

The procedure definition must result in a generator, i.e., there must be at least
one yield; in general, this will typically be a yield row, but a rowfilter may
swallow or create as many rows as desired.

If you forget to have a yield in the rowfilter source, you’ll get a "NoneType is
not iterable" error that’s a bit hard to understand.

Here, you can only access whatever comes from the grammar. You can access
grammar keys in late parameters as row[key] or, if key is like an identifier, as
@key.

May occur in Element voTableGrammar, Element reGrammar, Element con-
textGrammar, Element columnGrammar, Element cdfHeaderGrammar, Element
fitsTableGrammar, Element rowsetGrammar, Element binaryGrammar, Element
fitsProdGrammar, Element pdsGrammar, Element customGrammar, Element
mySQLDumpGrammar, Element freeREGrammar, Element dictlistGrammar, El-
ement keyValueGrammar, Element csvGrammar, Element embeddedGrammar,
Element nullGrammar.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

101

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element rowsetGrammar

A grammar handling sequences of tuples.

To add semantics to the field, it must know the "schema" of the data. This is
defined via the table it is supposed to get the input from.

This grammar probably is only useful for internal purposes.

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ fieldsFrom (id reference; defaults to <Undefined>) -- the table defining
the columns in the tuples.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

102

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Element sourceFields

A procedure application that returns a dictionary added to all incoming rows.

Use this to programmatically provide information that can be computed once
but that is then added to all rows coming from a single source, usually a file.
This could be useful to add information on the source of a record or the like.

The code must return a dictionary. The source that is about to be parsed is
passed in as sourceToken. When parsing from files, this simply is the file name.
The data the rows will be delivered to is available as "data", which is useful for
adding or retrieving meta information.

May occur in Element voTableGrammar, Element reGrammar, Element con-
textGrammar, Element columnGrammar, Element cdfHeaderGrammar, Element
fitsTableGrammar, Element rowsetGrammar, Element binaryGrammar, Element

103

fitsProdGrammar, Element pdsGrammar, Element customGrammar, Element
mySQLDumpGrammar, Element freeREGrammar, Element dictlistGrammar, El-
ement keyValueGrammar, Element csvGrammar, Element embeddedGrammar,
Element nullGrammar.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element voTableGrammar

A grammar parsing from VOTables.

Currently, the PARAM fields are ignored, only the data rows are returned.

voTableGrammars result in typed records, i.e., values normally come in the types
they are supposed to have.

104

Atomic Children

∙ enc (unicode string; defaults to None) -- Encoding of strings coming in
from source.

∙ gunzip (boolean; defaults to ’False’) -- Unzip sources while reading?

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ ignoreOn (contains Element ignoreOn) -- Conditions for ignoring certain
input records. These triggers drop an input record entirely. If you feed
multiple tables and just want to drop a row from a specific table, you can
use ignoreOn in a rowmaker.

∙ rowfilters (contains Element rowfilter and may be repeated zero or more
times) -- Row filters for this grammar.

∙ sourceFields (contains Element sourceFields) -- Code returning a dictio-
nary of values added to all returned rows.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro decapitalize, Macro fullDLMetaURL, Macro fullDLURL, Macro
getConfig, Macro inputRelativePath, Macro inputSize, Macro internallink,
Macro lastSourceElements, Macro magicEmpty, Macro metaString, Macro
property, Macro quote, Macro rdId, Macro rdIdDotted, Macro rootlessPath,
Macro rowsProcessed, Macro schema, Macro sourceDate, Macro srcstem,
Macro standardPreviewPath, Macro test, Macro today, Macro upper, Macro
urlquote

Cores Available
The following elements are related to cores. All cores can only occur toplevel,
i.e. as direct children of resource descriptors. Cores are only useful with an id
to make them referencable from services using that core.

105

Element adqlCore

A core taking an ADQL query from its query argument and returning the result
of that query in a standard table.

Since the columns returned depend on the query, the outputTable of an ADQL
core must not be defined.

Atomic Children

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element computedCore

A core wrapping external applications.

ComputedCores wrap command line tools taking command line arguments,
reading from stdin, and outputting to stdout.

The command line arguments are taken from the inputTable’s parameters, stdin
is created by serializing the inputTable’s rows like they are serialized for with
the TSV output, except only whitespace is entered between the values.

The output is the primary table of parsing the program’s output with the data
child.

While in principle more declarative than PythonCores, these days I’d say rather
use one of those.

106

Atomic Children

∙ computer (unicode string; defaults to <Undefined>) -- Resdir- relative
basename of the binary doing the computation. The standard rules for
cross-platform binary name determination apply.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

∙ resultParse (contains Element data) -- Data descriptor to parse the com-
puter’s output.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element coreProc

A definition of a pythonCore’s functionalty.

This is a procApp complete with setup and code; you could inherit between
these.

coreProcs see the embedding service, the input table passed, and the query
metadata as service, inputTable, and queryMeta, respectively.

The core itself is available as self.

May occur in Element pythonCore.

107

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element customCore

A wrapper around a core defined in a module.

This core lets you write your own cores in modules.

The module must define a class Core. When the custom core is encountered,
this class will be instanciated and will be used instead of the CustomCore, so
your code should probably inherit core.Core.

See Writing Custom Cores for details.

108

Atomic Children

∙ module (unicode string; defaults to <Undefined>) -- Path to the module
containing the core definition.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element dataFormatter

A procedure application that renders data in a processed service.

These play the role of the renderer, which for datalink is ususally trivial. They
are supposed to take descriptor.data and return a pair of (mime-type, bytes),
which is understood by most renderers.

When no dataFormatter is given for a core, it will return descriptor.data directly.
This can work with the datalink renderer itself if descriptor.data will work as
a nevow resource (i.e., has a renderHTTP method, as our usual products do).
Consider, though, that renderHTTP runs in the main event loop and thus most
not block for extended periods of time.

The following names are available to the code:

∙ descriptor -- whatever the DescriptorGenerator returned
∙ args -- all the arguments that came in from the web.

In addition to the usual names available to ProcApps, data formatters have:

109

∙ Page -- base class for resources with renderHTTP methods.
∙ IRequest -- the nevow interface to make Request objects with.
∙ File(path, type) -- if you just want to return a file on disk, pass its

path and media type to File and return the result.
∙ TemporaryFile(path, type) -- as File, but the disk file is unlinked

after use

May occur in Element datalinkCore.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

110

Element dataFunction

A procedure application that generates or modifies data in a processed data
service.

All these operate on the data attribute of the product descriptor. The first
data function plays a special role: It must set the data attribute (or raise some
appropriate exception), or a server error will be returned to the client.

What is returned depends on the service, but typcially it’s going to be a table
or products.*Product instance.

Data functions can shortcut if it’s evident that further data functions can only
mess up (i.e., if the do something bad with the data attribute); you should not
shortcut if you just think it makes no sense to further process your output.

To shortcut, raise either of FormatNow (falls though to the formatter, which is
usually less useful) or DeliverNow (directly returns the data attribute; this can
be used to return arbitrary chunks of data).

The following names are available to the code:

∙ descriptor -- whatever the DescriptorGenerator returned
∙ args -- all the arguments that came in from the web.

In addition to the usual names available to ProcApps, data functions have:

∙ FormatNow -- exception to raise to go directly to the formatter
∙ DeliverNow -- exception to raise to skip all further formatting and

just deliver what’s currently in descriptor.data
∙ File(path, type) -- if you just want to return a file on disk, pass its

path and media type to File and assign the result to descriptor.data.
∙ TemporaryFile(path,type) -- as File, but the disk file is unlinked after

use

May occur in Element datalinkCore.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

111

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element datalinkCore

A core for processing datalink and processed data requests.

The input table of this core is dynamically generated from its metaMakers; it
makes no sense at all to try and override it.

See Datalink Cores for more information.

In contrast to "normal" cores, one of these is made (and destroyed) for each
datalink request coming in. This is because the interface of a datalink service
depends on the request’s value(s) of ID.

The datalink core can produce both its own metadata and data generated. It
is the renderer’s job to tell them apart.

Atomic Children

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

112

Structure Children

∙ dataFormatter (contains Element dataFormatter) -- Code that turns de-
scriptor.data into a nevow resource or a mime, content pair. If not given,
the renderer will be returned descriptor.data itself (which will probably
not usually work).

∙ dataFunctions (contains Element dataFunction and may be repeated zero
or more times) -- Code that generates of processes data for this core. The
first of these plays a special role in that it must set descriptor.data, the
others need not do anything at all.

∙ descriptorGenerator (contains Element descriptorGenerator) -- Code that
takes a PUBDID and turns it into a product descriptor instance. If not
given, //datalink#fromStandardPubDID will be used.

∙ inputKeys (contains Element inputKey and may be repeated zero or more
times) -- A parameter to one of the proc apps (data functions, formatters)
active in this datalink core; no specific relation between input keys and
procApps is supposed; all procApps are passed all argments. Convention-
ally, you will write the input keys in front of the proc apps that interpret
them.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ metaMakers (contains Element metaMaker and may be repeated zero or
more times) -- Code that takes a data descriptor and either updates input
key options or yields related data.

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element dbCore

A core performing database queries on one table or view.

DBCores ask the service for the desired output schema and adapt their output.
The DBCore’s output table, on the other hand, lists all fields available from the
queried table.

113

Atomic Children

∙ distinct (boolean; defaults to ’False’) -- Add a ’distinct’ modifier to the
query?

∙ groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn’t generally need this, and if you use it, you must give an output-
Table to your core.

∙ limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

∙ namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable’s
id.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

∙ sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

114

Element debugCore

a core that returns its arguments stringified in a table.

You need to provide an external input tables for these.

Atomic Children

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element descriptorGenerator

A procedure application for making product descriptors for PUBDIDs

A normal product descriptor contains basically what DaCHS’ product table con-
tains. You could derive from protocols.datalink.ProductDescriptor, though, e.g.,
in the setup of this proc.

The following names are available to the code:

∙ pubDID -- the pubDID to be resolved
∙ args -- all the arguments that came in from the web (these

should not ususally be necessary and are completely unparsed)

If you made your pubDID using the getStandardPubDID rowmaker func-
tion, and you need no additional logic within the descriptor, the default
(//datalink#fromStandardPubDID) should do.

If you need to derive custom descriptor classes, you can see the base class under
the name ProductDescriptor.

May occur in Element datalinkCore.

115

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element editCore

A core that allows POSTing records into database tables.

Atomic Children

∙ namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable’s
id.

116

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ queriedTable (id reference; defaults to <Undefined>) -- Reference to
the table to be edited

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element fancyQueryCore

A core executing a pre-specified query with fancy conditions.

Unless you select *, you must define the outputTable here; Weird things will
happen if you don’t.

The queriedTable attribute is ignored.

Atomic Children

∙ namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable’s
id.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

117

∙ query (unicode string; defaults to <Undefined>) -- The query to execute.
It must contain exactly one %s where the generated where clause is to
be inserted. Do not write WHERE yourself. All other percents must be
escaped by doubling them.

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element fixedQueryCore

A core executing a predefined query.

This usually is not what you want, unless you want to expose the current results
of a specific query, e.g., for log or event data.

Atomic Children

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ query (unicode string; defaults to <Undefined>) -- The query to be
executed. You must define the output fields in the core’s output table.
The query will be macro-expanded in the resource descriptor.

∙ timeout (float; defaults to ’15.0’) -- Seconds until the query is aborted

∙ writable (boolean; defaults to ’False’) -- Use a writable DB connection?

118

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element inputTable

an input table for a core.

For the standard cores, these have no rows but only params, with the exception
of ComputedCore, which can build program input from rows.

Typically, however, the input table definition is made from a core’s condDescs
and thus never explicitely defined. In these cases, adaptForRenderer becomes
relevant. This is for when one renderer, e.g., form, needs to expose a different
interface than another, e.g., a protocol-based renderer. SCS is a good example,
where the form renderer has a single argument for the position.

May occur in Element scsCore, Element siapCutoutCore, Element customCore,
Element nullCore, Element productCore, Element adqlCore, Element python-
Core, Element registryCore, Element dbCore, Element fancyQueryCore, Ele-
ment editCore, Element computedCore, Element sdmCore, Element debugCore,
Element ssapProcessCore, Element datalinkCore, Element fixedQueryCore, Ele-
ment uploadCore, Element ssapCore.

Atomic Children

∙ adql (boolean or ’hidden’; defaults to ’False’) -- Should this table be
available for ADQL queries? In addition to True/False, this can also be
’hidden’ for tables readable from the TAP machinery but not published
in the metadata; this is useful for, e.g., tables contributing to a published
view. Warning: adql=hidden is incompatible with setting readProfiles
manually.

∙ allProfiles (Comma separated list of profile names.; defaults to u’admin,
msdemlei’) -- A (comma separated) list of profile names through which
the object can be written or administred.

119

∙ dupePolicy (One of: drop, check, overwrite, dropOld; defaults to ’check’)
-- Handle duplicate rows with identical primary keys manually by raising
an error if existing and new rows are not identical (check), dropping the
new one (drop), updating the old one (overwrite), or dropping the old
one and inserting the new one (dropOld)?

∙ forceUnique (boolean; defaults to ’False’) -- Enforce dupe policy for
primary key (see dupePolicy)?

∙ A mixin reference, typically to support certain protocol. See Mixins.

∙ namePath (id reference; defaults to None) -- Reference to an element
tried to satisfy requests for names in id references of this element’s chil-
dren.

∙ onDisk (boolean; defaults to ’False’) -- Table in the database rather than
in memory?

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ primary (Comma-separated list of strings; defaults to ”) -- Comma sep-
arated names of columns making up the primary key.

∙ readProfiles (Comma separated list of profile names.; defaults to
u’trustedquery’) -- A (comma separated) list of profile names through
which the object can be read.

∙ system (boolean; defaults to ’False’) -- Is this a system table? If it is,
it will not be dropped on normal imports, and accesses to it will not be
logged.

∙ temporary (boolean; defaults to ’False’) -- If this is an onDisk table,
make it temporary? This is mostly useful for custom cores and such.

∙ viewStatement (unicode string; defaults to None) -- A single SQL state-
ment to create a view. Setting this makes this table a view. The statement
will typically be something like CREATE VIEW \curtable AS (SELECT
\colNames FROM...).

Structure Children

∙ columns (contains Element column and may be repeated zero or more
times) -- Columns making up this table.

∙ foreignKeys (contains Element foreignKey and may be repeated zero or
more times) -- Foreign keys used in this table

120

∙ groups (contains Element group and may be repeated zero or more times)
-- Groups for columns and params of this table

∙ indices (contains Element index and may be repeated zero or more times)
-- Indices defined on this table

∙ params (contains Element inputKey and may be repeated zero or more
times) -- Input parameters for this table.

∙ registration (contains Element publish (data)) -- A registration (to the
VO registry) of this table.

∙ stc (contains Element stc and may be repeated zero or more times) --
STC-S definitions of coordinate systems.

Other Children

∙ meta -- a piece of meta information, giving at least a name and some
content. See Metadata on what is permitted here.

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Macros predefined here: Macro RSTservicelink, Macro RSTtable, Macro col-
Names, Macro curtable, Macro decapitalize, Macro getConfig, Macro get-
Param, Macro internallink, Macro magicEmpty, Macro metaString, Macro
nameForUCD, Macro nameForUCDs, Macro qName, Macro quote, Macro rdId,
Macro rdIdDotted, Macro schema, Macro tablename, Macro test, Macro today,
Macro upper, Macro urlquote

Element metaMaker

A procedure application that generates metadata for datalink services.

The code must be generators (i.e., use yield statements) producing either
svcs.InputKeys or protocols.datalink.LinkDef instances.

metaMaker see the data descriptor of the input data under the name descriptor.

The data attribute of the descriptor is always None for metaMakers, so you
cannot use anything given there.

Within MetaMakers’ code, you can access InputKey, Values, Option, and
LinkDef without qualification, and there’s the MS function to build structures.
Hence, a metaMaker returning an InputKey could look like this:

121

<metaMaker>
<code>

yield MS(InputKey, name="format", type="text",
description="Output format desired",
values=MS(Values,

options=[MS(Option, content_=descriptor.mime),
MS(Option, content_="text/plain")]))

</code>

</metaMaker>

(of course, you should give more metadata -- ucds, better description, etc) in
production).

In addition to the usual names available to ProcApps, meta makers have:

∙ MS -- function to make DaCHS structures
∙ InputKey -- the class to make for input parameters
∙ Values -- the class to make for input parameters’ values attributes
∙ Options -- used by Values
∙ LinkDef -- a class to define further links within datalink services.
∙ DatalinkFault -- a container of datalink error generators

May occur in Element datalinkCore.

Atomic Children

∙ code (unicode string; defaults to <Not given/empty>) -- A python func-
tion body.

∙ doc (unicode string; defaults to ”) -- Human-readable docs for this proc
(may be interpreted as restructured text).

∙ name (unicode string; defaults to <Not given/empty>) -- A name of the
proc. ProcApps compute their (python) names to be somwhat random
strings. Set a name manually to receive more easily decipherable error
messages. If you do that, you have to care about name clashes yourself,
though.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ procDef (id reference; defaults to <Not given/empty>) -- Reference to
the procedure definition to apply

122

∙ type (One of: regTest, rowfilter, dataFunction, descriptorGenerator,
metaMaker, phraseMaker, mixinProc, dataFormatter, sourceFields, ap-
ply, t_t; defaults to None) -- The type of the procedure definition. The
procedure applications will in general require certain types of definitions.

Structure Children

∙ bindings (contains Element bind and may be repeated zero or more times)
-- Values for parameters of the procedure definition

∙ setups (contains Element setup and may be repeated zero or more times)
-- Setup of the namespace the function will run in

Element nullCore

A core always returning None.

This core will not work with the common renderers. It is really intended to go
with coreless services (i.e. those in which the renderer computes everthing itself
and never calls service.runX). As an example, the external renderer could go
with this.

Atomic Children

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

123

Element productCore

A core retrieving paths and/or data from the product table.

You will not usually mention this core in your RDs. It is mainly used internally
to serve /getproduct queries.

It is instanciated from within //products.rd and relies on tables within that RD.

The input data consists of accref; you can use the string form of RAccrefs, and
if you renderer wants, it can pass in ready-made RAccrefs. You can pass accrefs
in through both an accref param and table rows.

The accref param is the normal way if you just want to retrieve a single image,
the table case is for building tar files and such. There is one core instance in
//products for each case.

The core returns a table containing rows with the single column source. Each
contains a subclass of ProductBase above.

All this is so complicated because special processing may take place (user au-
torisation, cutouts, ...) but primarily because we wanted the tar generation to
use this core. Looking at the mess that’s caused suggests that probably was the
wrong decision.

Atomic Children

∙ distinct (boolean; defaults to ’False’) -- Add a ’distinct’ modifier to the
query?

∙ groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn’t generally need this, and if you use it, you must give an output-
Table to your core.

∙ limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

∙ namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable’s
id.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

124

∙ sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element pythonCore

A core doing computation using a piece of python.

See Python Cores instead of Custom Cores in the reference.

Atomic Children

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ coreProc (contains Element coreProc) -- Code making the outputTable
from the inputTable.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

125

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element registryCore

is a core processing OAI requests.

Its signature requires a single input key containing the complete args from the
incoming request. This is necessary to satisfy the requirement of raising errors
on duplicate arguments.

It returns an ElementTree.

This core is intended to work the the RegistryRenderer.

Atomic Children

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

126

Element scsCore

A core performing cone searches.

This will, if it finds input parameters it can make out a position from, add a _r
column giving the distance between the match center and the columns that a
cone search will match against.

If any of the conditions for adding _r aren’t met, this will silently degrade to a
plain DBCore.

You will almost certainly want a:

<FEED source="//scs#coreDescs"/>

in the body of this (in addition to whatever other custom conditions you may
have).

Atomic Children

∙ distinct (boolean; defaults to ’False’) -- Add a ’distinct’ modifier to the
query?

∙ groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn’t generally need this, and if you use it, you must give an output-
Table to your core.

∙ limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

∙ namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable’s
id.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

∙ sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

127

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element sdmCore

A core for making (VO)Tables according to the Spectral Data Model.

Do not use this any more, use datalink to do this.

Here, the input table consists of the accref of the data to be generated. The
data child of an SDMVOTCore prescribes how to come up with the table. The
output table is the (primary) table of the data instance.

If you find yourself using this, please let the authors know. We tend to believe
SDMCores should no longer be necessary in the presence of getData, and hence
we might want to remove this at some point.

Atomic Children

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ queriedTable (id reference; defaults to <Undefined>) -- A reference to
the SSAP table to search the accrefs in

128

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

∙ sdmDD (contains Element data) -- A data instance that builds the SDM
table. You’ll need a custom or embedded grammar for those that accepts
an SDM row as input.

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element siapCutoutCore

A core doing SIAP plus cutouts.

It has, by default, an additional column specifying the desired size of the image
to be retrieved. Based on this, the cutout core will tweak its output table such
that references to cutout images will be retrieved.

The actual process of cutting out is performed by the product core and renderer.

Atomic Children

∙ distinct (boolean; defaults to ’False’) -- Add a ’distinct’ modifier to the
query?

∙ groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn’t generally need this, and if you use it, you must give an output-
Table to your core.

∙ limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

∙ namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable’s
id.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

129

∙ queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

∙ sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element ssapCore

A core doing SSAP queries.

This core knows about metadata queries, version negotiation, and dispatches
on REQUEST. Thus, it may return formatted XML data under certain circum-
stances.

SSAPCores also know how to handle getData requests according to the 2012
draft. This is done via datalink, and we expect parameters as per the sdm_*
streams in datalink.

Atomic Children

∙ distinct (boolean; defaults to ’False’) -- Add a ’distinct’ modifier to the
query?

∙ groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn’t generally need this, and if you use it, you must give an output-
Table to your core.

130

∙ limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

∙ namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable’s
id.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

∙ sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Element ssapProcessCore

Temporary Hack; delete when ccd700 is ported to a sane infrastructure.

131

Atomic Children

∙ distinct (boolean; defaults to ’False’) -- Add a ’distinct’ modifier to the
query?

∙ groupBy (unicode string; defaults to None) -- A group by clause. You
shouldn’t generally need this, and if you use it, you must give an output-
Table to your core.

∙ limit (integer; defaults to None) -- A pre-defined match limit (suppresses
DB options widget).

∙ namePath (id reference; defaults to None) -- Id of an element that will
be used to located names in id references. Defaults to the queriedTable’s
id.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

∙ queriedTable (id reference; defaults to <Undefined>) -- A reference to
the table this core queries.

∙ sortKey (unicode string; defaults to None) -- A pre-defined sort order
(suppresses DB options widget). The sort key accepts multiple columns,
separated by commas.

Structure Children

∙ condDescs (contains Element condDesc and may be repeated zero or more
times) -- Descriptions of the SQL and input generating entities for this
core; if not given, they will be generated from the table columns.

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

132

Element uploadCore

A core handling uploads of files to the database.

It allows users to upload individual files into a special staging area (taken from
the stagingDir property of the destination data descriptor) and causes these files
to be parsed using destDD.

You can tell UploadCores to either insert or update the incoming data using the
"mode" input key.

Atomic Children

∙ destDD (id reference; defaults to <Undefined>) -- Reference to the data
we are uploading into.

∙ original (id reference; defaults to None) -- An id of an element to base the
current one on. This provides a simple inheritance method. The general
rules for advanced referencing in RDs apply.

Structure Children

∙ inputTable (contains Element inputTable) -- Description of the input data

∙ outputTable (contains Element outputTable) -- Table describing what
fields are available from this core

Other Children

∙ property (mapping of user-defined keywords in the name attribute to
string values) -- Properties (i.e., user-defined key-value pairs) for the ele-
ment.

Predefined Macros
Macro expansions in DaCHS start with a backslash, arguments are given in
curly braces. What macros are available depends on the element doing the
expansion; regrettably, not all strings are expanded, and at this point it’s not
usually documented which are and which are not (though we hope DaCHS
typically behaves "as expected"). If this bites you, complain to the authors and
we promise we’ll give fixing this a higher priority.

133

Macro RSTcc0

\RSTcc0{stuffDesignation}

expands to a declaration that stuffDesignation is available under CC-0.

This only works in reStructured text (though it’s still almost readable as source).

Available in Element resource

Macro RSTccby

\RSTccby{stuffDesignation}

expands to a declaration that stuffDesignation is available under CC-BY.

This only works in reStructured text (though it’s still almost readable as source).

Available in Element resource

Macro RSTservicelink

\RSTservicelink{serviceId}{title=None}

a link to an internal service; id is <rdId>/<serviceId>/<renderer>, title, if
given, is the anchor text.

The result is a link in the short form for restructured test.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

134

Macro RSTtable

\RSTtable{tableName}

adds an reStructured test link to a tableName pointing to its table info.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro colNames

\colNames

returns an SQL-ready list of column names of this table.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element inputTable, Element keyValueGrammar, Element mySQLDumpGram-
mar, Element nullGrammar, Element outputTable, Element pdsGrammar, Ele-
ment reGrammar, Element rowsetGrammar, Element table, Element voTable-
Grammar

Macro curtable

\curtable

returns the qualified name of the current table.

Available in Element inputTable, Element outputTable, Element table

135

Macro decapitalize

\decapitalize{aString}

returns aString with the first character lowercased.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro dlMetaURI

\dlMetaURI{dlId}

returns a link to the datalink document for the current product.

This assumes you’re assinging standard pubDIDs (see also standardPubDID,
which is used by this).

dlId is the XML id of the datalink service, which is supposed to be in the sameRD
as the rowmaker.

Available in Element rowmaker

Macro docField

\docField{name}

returns an expression giving the value of the column name in the document row.

Available in Element rowmaker

136

Macro fullDLMetaURL

\fullDLMetaURL{dlService}

like fullDLURL, except it points to the datalink metadata.

This is intended for binding to //products#define’s datalink parameter.

If you need the value in a rowmaker, grab it from @prodtblDatalink.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element pdsGrammar, Element reGrammar, Element rowsetGram-
mar, Element voTableGrammar

Macro fullDLURL

\fullDLURL{dlService}

returns a python expression giving a link pullling the standard PubDID of the
current source through the datalink service dlService.

You would write \fullDLURL{dlsvc} here, and the macro will expand into some-
thing like http://yourserver/currd/dlget?ID=ivo://whatever.

dlService is the id of the datalink service in the current RD.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element pdsGrammar, Element reGrammar, Element rowsetGram-
mar, Element voTableGrammar

Macro getConfig

\getConfig{section}{name=None}

137

http://yourserver/currd/dlget?ID=ivo://whatever

the current value of configuration item {section}{name}.

You can also only give one argument to access settings from the general section.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro getParam

\getParam{parName}{default=’’}

returns the string representation of the parameter parName.

This is the parameter as given in the table definition. Any changes to an instance
are not reflected here.

If the parameter named does not exist, an empty string is returned.
NULLs/Nones are rendered as NULL; this is mainly a convenience for obscore-
like applications and should not be exploited otherwise, since it’s ugly and might
change at some point.

If a default is given, it will be returned for both NULL and non-existing params.

Available in Element inputTable, Element outputTable, Element table

Macro inputRelativePath

\inputRelativePath{liberalChars=’True’}

returns an expression giving the current source’s path relative to inputsDir

liberalChars can be a boolean literal (True, False, etc); if false, a value error is
raised if characters that will result in trouble with the product mixin are within
the result path.

In rowmakers fed by grammars with //products#define, better use @prodtblAc-
cref.

138

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element pdsGrammar, Element reGrammar, Element rowmaker,
Element rowsetGrammar, Element voTableGrammar

Macro inputSize

\inputSize

returns an expression giving the size of the current source.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element pdsGrammar, Element reGrammar, Element rowmaker,
Element rowsetGrammar, Element voTableGrammar

Macro internallink

\internallink{relPath}

an absolute URL from a path relative to the DC root.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro lastSourceElements

\lastSourceElements{numElements}

139

returns an expression calling rmkfuncs.lastSourceElements on the current input
path.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element pdsGrammar, Element reGrammar, Element rowmaker,
Element rowsetGrammar, Element voTableGrammar

Macro magicEmpty

\magicEmpty{val}

returns __EMPTY__ if val is empty.

This is necessary when feeding possibly empty params from mixin parameters
(don’t worry if you don’t understand this).

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro metaString

\metaString{metaKey}{default=None}

the value of metaKey on the macro expander.

This will raise an error when the meta Key is not available unless you give a
default.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,

140

Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro nameForUCD

\nameForUCD{ucd}

returns the (unique!) name of the field having ucd in this table.

If there is no or more than one field with the ucd in this table, we raise a
ValueError.

Available in Element inputTable, Element outputTable, Element table

Macro nameForUCDs

\nameForUCDs{ucds}

returns the (unique!) name of the field having one of ucds in this table.

Ucds is a selection of ucds separated by vertical bars (|). The rules for when
this raises errors are so crazy you don’t want to think about them. This really
is only intended for cases where "old" and "new" standards are to be supported,
like with pos.eq.*;meta.main and POS_EQ_*_MAIN.

If there is no or more than one field with the ucd in this table, we raise an
exception.

Available in Element inputTable, Element outputTable, Element table

Macro property

\property{propName}

returns an expression giving the value of the property propName on the current
DD.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element pdsGrammar, Element reGrammar, Element rowmaker,
Element rowsetGrammar, Element voTableGrammar

141

Macro qName

\qName

returns the qName of the table we are currently parsing into.

Available in Element inputTable, Element outputTable, Element rowmaker, El-
ement table

Macro quote

\quote{arg}

returns the argument in quotes (with internal quotes backslash-escaped if nec-
essary).

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro rdId

\rdId

the identifier of the current resource descriptor.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

142

Macro rdIdDotted

\rdIdDotted

the identifier for the current resource descriptor with slashes replaced with dots
(so they work as the "host part" in URIs.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro rootlessPath

\rootlessPath

returns an expression giving the current source’s path with the resource descrip-
tor’s root removed.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element pdsGrammar, Element reGrammar, Element rowmaker,
Element rowsetGrammar, Element voTableGrammar

Macro rowsMade

\rowsMade

returns an expression giving the number of records already returned by this row
maker.

This number excludes failed and skipped rows.

Available in Element rowmaker

143

Macro rowsProcessed

\rowsProcessed

returns an expression giving the number of records already delivered by the
grammar.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element pdsGrammar, Element reGrammar, Element rowmaker,
Element rowsetGrammar, Element voTableGrammar

Macro schema

\schema

the schema of the current resource descriptor.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro sourceDate

\sourceDate

returns an expression giving the timestamp of the current source.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element pdsGrammar, Element reGrammar, Element rowmaker,
Element rowsetGrammar, Element voTableGrammar

144

Macro srcstem

\srcstem

returns python code for the stem of the source file currently parsed in a row-
maker.

Example: if you’re currently parsing /tmp/foo.bar.gz, the stem is foo.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGram-
mar, Element keyValueGrammar, Element mySQLDumpGrammar, Element
nullGrammar, Element pdsGrammar, Element reGrammar, Element rowmaker,
Element rowsetGrammar, Element voTableGrammar

Macro standardPreviewPath

\standardPreviewPath

returns an expression for the standard path for a custom preview.

This consists of resdir, the name of the previewDir property on the embedding
DD, and the flat name of the accref (which this macro assumes to see in its
namespace as accref; this is usually the case in //products#define, which is
where this macro would typically be used).

See the introduction to custom previews for details.

Available in Element binaryGrammar, Element cdfHeaderGrammar, Element
columnGrammar, Element contextGrammar, Element csvGrammar, Element
customGrammar, Element dictlistGrammar, Element embeddedGrammar, El-
ement fitsProdGrammar, Element fitsTableGrammar, Element freeREGrammar,
Element keyValueGrammar, Element mySQLDumpGrammar, Element null-
Grammar, Element pdsGrammar, Element reGrammar, Element rowsetGram-
mar, Element voTableGrammar

Macro standardPubDID

\standardPubDID

145

returns the "standard publisher DID" for the current product.

The publisher dataset identifier (PubDID) is important in protocols like SSAP
and obscore. If you use this macro, the PubDID will be your authority, the path
compontent ~, and the current value of @prodtblAccref. It thus will only work
where products#define (or a replacement) is in action. If it isn’t, a normal
function call getStandardPubDID(\\inputRelativePath) would be an obvious
alternative.

You can of course define your PubDIDs in a different way.

Available in Element rowmaker

Macro tablename

\tablename

returns the unqualified name of the current table.

Available in Element inputTable, Element outputTable, Element table

Macro tablesForTAP

\tablesForTAP

undocumented Available in Element service

Macro test

\test{*args}

always "test macro expansion".

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

146

Macro today

\today

today’s date in ISO representation.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro upper

\upper{aString}

returns aString uppercased.

There’s no guarantees for characters outside ASCII.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element
dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Macro urlquote

\urlquote{string}

wraps urllib.quote.

Available in Element FEED, Element LFEED, Element LOOP, Element bina-
ryGrammar, Element cdfHeaderGrammar, Element columnGrammar, Element
contextGrammar, Element csvGrammar, Element customGrammar, Element

147

dictlistGrammar, Element embeddedGrammar, Element fitsProdGrammar, El-
ement fitsTableGrammar, Element freeREGrammar, Element inputTable, Ele-
ment keyValueGrammar, Element mixinDef, Element mySQLDumpGrammar,
Element nullGrammar, Element outputTable, Element pdsGrammar, Element
reGrammar, Element resRec, Element resource, Element rowmaker, Element
rowsetGrammar, Element service, Element table, Element voTableGrammar

Mixins
Mixins ensure a certain functionality on a table. Typically, this is used to provide
certain guaranteed fields to particular cores. For many mixins, there are prede-
fined procedures (both rowmaker applys and grammar rowfilters) that should be
used in grammars and/or rowmakers feeding the tables mixing in a given mixin.

The //epntap#table Mixin

This mixin defines a table suitable for publication via the EPN-TAP protocol.

According to the standard definition, tables mixing this in should be called
epn_core. The mixin already arranges for the table to be accessible by ADQL
and be on disk.

This also mixes causes the product table to be populated. This means that
grammars feeding such tables need a //products#define row filter. At the very
least, you need to say:

<rowfilter procDef="//products#define">
<bind name="table">"\schema.epn_core"</bind>

</rowfilter>

Use the //epntap#populate apply in rowmakers feeding tables mixing this in.

This mixin has the following parameters:

Parameter c1unit defaults to deg; Unit of the first spatial coordinate

Parameter c2unit defaults to deg; Unit of the second spatial coordinate

Parameter c3unit Unit of the third spatial coordinate

Parameter processing_level How processed is the data? This is a numerical
code explained in the corresponding table footnote. In short: 1 -- Raw; 2
-- Edited; 3 -- Calibrated; 4 -- Resampled; 5 -- Derived; 6 -- Ancillary

Parameter spectralUCD defaults to em.freq; UCD of the spectral axis;
this must be one of em.freq (for electromagnetic radiation) or
phys.energy;phys.part (for particles)

148

The //obscore#publish Mixin

Publish this table to ObsTAP.

This means mapping or giving quite a bit of data from the present table to
ObsCore rows. Internally, this information is converted to an SQL select state-
ment used within a create view statement. In consequence, you must give SQL
expressions in the parameter values; just naked column names from your input
table are ok, of course. Most parameters are set to NULL or appropriate defaults
for tables mixing in //products#table.

Since the mixin generates script elements, it cannot be used in untrusted RDs.
The fact that you can enter raw SQL also means you will get ugly error messages
if you give invalid parameters.

Some items are filled from product interface fields automatically. You must
change these if you obscore-publish tables not mixin in products.

This mixin has the following parameters:

Parameter accessURL defaults to $COMPUTE; URL at which the product can be
obtained. Leave at $COMPUTE for tables mixing in products.

Parameter calibLevel defaults to 0; Calibration level of data, a number be-
tween 0 and 3; for details, see http://dc.g-vo.org/tableinfo/ivoa.obscore#
note-calib

Parameter collectionName defaults to ’unnamed’; A human-readable name
for this collection. This should be short, so don’t just use the resource
title

Parameter coverage defaults to NULL; A polygon giving the spatial coverage
of the data set; this must always be in ICRS. Instead of an SPOLY other
pgsphere areas might work, too.

Parameter creatorDID defaults to NULL; Global identifier of the data set as-
signed by the creator. Leave NULL unless the creator actually assigned
an IVO id herself.

Parameter dec defaults to NULL; Center Dec

Parameter did defaults to $COMPUTE; Global identifier of the data set. Leave
$COMPUTE for tables mixing in products.

Parameter emMax defaults to NULL; Upper bound of wavelengths represented
in the data set, in meters.

149

http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib

Parameter emMin defaults to NULL; Lower bound of wavelengths represented
in the data set, in meters.

Parameter emResPower defaults to NULL; Spectral resolution as lambda/delta
lambda

Parameter expTime defaults to NULL; Total time of event counting. This
simply is tMax-tMin for simple exposures.

Parameter facilityName defaults to NULL; The institute or observatory at
which the data was produced

Parameter fov defaults to NULL; Approximate diameter of region covered

Parameter instrumentName defaults to NULL; The instrument that produced
the data

Parameter mime defaults to mime; The MIME type of the product file. Only
touch if you do not mix in products.

Parameter oUCD defaults to NULL; UCD of the observable quantity, e.g.,
em.opt for wide-band optical frames.

Parameter obsId defaults to accref; Identifier of the data set. Only change
this when you do not mix in products.

Parameter polStates defaults to NULL; List of polarization states present in
the data; if you give something, use the convention of choosing the ap-
propriate from {I Q U V RR LL RL LR XX YY XY YX POLI POLA} and
write them with / separators, e.g. /I/Q/XX/

Parameter productSubtype defaults to NULL; File subtype. Details pending

Parameter productType Data product type; one of image, cube, spectrum,
sed, timeseries, visibility, event, or NULL if None of the above

Parameter ra defaults to NULL; Center RA

Parameter sResolution defaults to NULL; The (best) angular resolution within
the data set, in arcsecs

Parameter size defaults to accsize/1024; The estimated size of the product in
kilobytes. Only touch when you do not mix in products#table.

Parameter tMax defaults to NULL; MJD for the upper bound of times covered
in the data set. See tMin

Parameter tMin defaults to NULL; MJD for the lower bound of times covered
in the data set (e.g. start of exposure). Use ts_to_mjd(ts) to get this
from a postgres timestamp.

150

Parameter tResolution defaults to NULL; Temporal resolution

Parameter targetClass defaults to NULL; Class of target object(s). You should
take whatever you put here from http://simbad.u-strasbg.fr/guide/chF.
htx

Parameter targetName defaults to NULL; Name of the target object.

Parameter title defaults to NULL; A human-readable title of the data set.

The //obscore#publishSIAP Mixin

Publish a PGS SIAP table to ObsTAP.

This works like //obscore#publish except some defaults apply that copy fields
that work analoguously in SIAP and in ObsTAP.

For special situations, you can, of course, override any of the parameters, but
most of them should already be all right. To find out what the parameters
described as "preset for SIAP" mean, refer to //obscore#publish.

This mixin has the following parameters:

Parameter accessURL defaults to $COMPUTE; URL at which the product can be
obtained. Leave at $COMPUTE for tables mixing in products.

Parameter calibLevel defaults to 0; Calibration level of data, a number be-
tween 0 and 3; for details, see http://dc.g-vo.org/tableinfo/ivoa.obscore#
note-calib

Parameter collectionName defaults to ’unnamed’; A human-readable name
for this collection. This should be short, so don’t just use the resource
title

Parameter coverage defaults to coverage; preset for SIAP

Parameter creatorDID defaults to NULL; Global identifier of the data set as-
signed by the creator. Leave NULL unless the creator actually assigned
an IVO id herself.

Parameter dec defaults to centerDelta; preset for SIAP

Parameter did defaults to $COMPUTE; Global identifier of the data set. Leave
$COMPUTE for tables mixing in products.

Parameter emMax defaults to bandpassHi; preset for SIAP

Parameter emMin defaults to bandpassLo; preset for SIAP

151

http://simbad.u-strasbg.fr/guide/chF.htx
http://simbad.u-strasbg.fr/guide/chF.htx
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib

Parameter emResPower defaults to NULL; Spectral resolution as lambda/delta
lambda

Parameter expTime defaults to NULL; Total time of event counting. This
simply is tMax-tMin for simple exposures.

Parameter facilityName defaults to NULL; The institute or observatory at
which the data was produced

Parameter fov defaults to pixelScale[1]*pixelSize[1]; preset for SIAP; we use
the extent along the X axis as a very rough estimate for the size. If you
can do better, by all means do.

Parameter instrumentName defaults to instId; The instrument that pro-
duced the data

Parameter mime defaults to mime; The MIME type of the product file. Only
touch if you do not mix in products.

Parameter oUCD defaults to ’em.opt’; preset for SIAP; fix if you either know
more about the band of if your images are not in the optical.

Parameter obsId defaults to accref; Identifier of the data set. Only change
this when you do not mix in products.

Parameter polStates defaults to NULL; List of polarization states present in
the data; if you give something, use the convention of choosing the ap-
propriate from {I Q U V RR LL RL LR XX YY XY YX POLI POLA} and
write them with / separators, e.g. /I/Q/XX/

Parameter productSubtype defaults to NULL; File subtype. Details pending

Parameter productType defaults to ’image’; preset for SIAP

Parameter ra defaults to centerAlpha; preset for SIAP

Parameter sResolution defaults to pixelScale[1]*3600; preset for SIAP; this
is just the pixel scale in one dimension. If that’s seriously wrong or you
have uncalibrated images in your collection, you may need to be more
careful here.

Parameter size defaults to accsize/1024; The estimated size of the product in
kilobytes. Only touch when you do not mix in products#table.

Parameter size defaults to accsize; preset for SIAP

Parameter tMax defaults to dateObs; preset for SIAP; if you want, change this
to end of observation as available.

152

Parameter tMin defaults to dateObs; preset for SIAP; if you want, change this
to start of observation as available.

Parameter tResolution defaults to NULL; Temporal resolution

Parameter targetClass defaults to NULL; Class of target object(s). You should
take whatever you put here from http://simbad.u-strasbg.fr/guide/chF.
htx

Parameter targetName defaults to NULL; Name of the target object.

Parameter title defaults to imageTitle; preset for SIAP

The //obscore#publishSSAPHCD Mixin

Publish a table mixing in //ssap#hcd to ObsTAP.

This works like //obscore#publish except some defaults apply that copy fields
that work analoguously in SSAP and in ObsTAP.

For special situations, you can, of course, override any of the parameters, but
most of them should already be all right. To find out what the parameters
described as "preset for SSAP" mean, refer to //obscore#publish.

This mixin has the following parameters:

Parameter accessURL defaults to $COMPUTE; URL at which the product can be
obtained. Leave at $COMPUTE for tables mixing in products.

Parameter calibLevel defaults to 0; Calibration level of data, a number be-
tween 0 and 3; for details, see http://dc.g-vo.org/tableinfo/ivoa.obscore#
note-calib

Parameter collection

defaults to \getParam{ssa_collection}{NULL}; UNDOCUMENTED

Parameter collectionName defaults to ’unnamed’; A human-readable name
for this collection. This should be short, so don’t just use the resource
title

Parameter coverage

defaults to NULL; UNDOCUMENTED

Parameter creatorDID

defaults to ssa_creatorDID; UNDOCUMENTED

153

http://simbad.u-strasbg.fr/guide/chF.htx
http://simbad.u-strasbg.fr/guide/chF.htx
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib
http://dc.g-vo.org/tableinfo/ivoa.obscore#note-calib

Parameter dec

defaults to degrees(lat(ssa_location)); UNDOCUMENTED

Parameter did defaults to $COMPUTE; Global identifier of the data set. Leave
$COMPUTE for tables mixing in products.

Parameter emMax

defaults to ssa_specend; UNDOCUMENTED

Parameter emMin

defaults to ssa_specstart; UNDOCUMENTED

Parameter emResPower defaults to NULL; Spectral resolution as lambda/delta
lambda

Parameter expTime defaults to NULL; Total time of event counting. This
simply is tMax-tMin for simple exposures.

Parameter expTime

defaults to ssa_timeExt; UNDOCUMENTED

Parameter facilityName defaults to NULL; The institute or observatory at
which the data was produced

Parameter fov

defaults to ssa_aperture; UNDOCUMENTED

Parameter instrumentName

defaults to ’\getParam{ssa_instrument}{NULL}’; UNDOCUMENTED

Parameter mime defaults to mime; The MIME type of the product file. Only
touch if you do not mix in products.

Parameter oUCD

defaults to ’\getParam{ssa_fluxucd}’; UNDOCUMENTED

Parameter obsId defaults to accref; Identifier of the data set. Only change
this when you do not mix in products.

Parameter polStates defaults to NULL; List of polarization states present in
the data; if you give something, use the convention of choosing the ap-
propriate from {I Q U V RR LL RL LR XX YY XY YX POLI POLA} and
write them with / separators, e.g. /I/Q/XX/

154

Parameter productSubtype defaults to NULL; File subtype. Details pending

Parameter productType

defaults to ’spectrum’; UNDOCUMENTED

Parameter ra

defaults to degrees(long(ssa_location)); UNDOCUMENTED

Parameter sResolution

defaults to \getParam{ssa_spaceRes}{NULL}/3600.; UNDOCUMENTED

Parameter size defaults to accsize/1024; The estimated size of the product in
kilobytes. Only touch when you do not mix in products#table.

Parameter tMax

defaults to NULL; UNDOCUMENTED

Parameter tMax

defaults to ssa_dateObs+ssa_timeExt/2; UNDOCUMENTED

Parameter tMin

defaults to NULL; UNDOCUMENTED

Parameter tMin

defaults to ssa_dateObs-ssa_timeExt/2; UNDOCUMENTED

Parameter tResolution defaults to NULL; Temporal resolution

Parameter targetClass defaults to NULL; Class of target object(s). You should
take whatever you put here from http://simbad.u-strasbg.fr/guide/chF.
htx

Parameter targetClass

defaults to ssa_targclass; UNDOCUMENTED

Parameter targetName defaults to NULL; Name of the target object.

Parameter targetName

defaults to ssa_targname; UNDOCUMENTED

Parameter title

defaults to ssa_dstitle; UNDOCUMENTED

155

http://simbad.u-strasbg.fr/guide/chF.htx
http://simbad.u-strasbg.fr/guide/chF.htx

The //products#table Mixin

A mixin for tables containing "products".

A "product" here is some kind of binary, typically a FITS file. The table re-
ceives the columns accref, accsize, owner, and embargo (which is defined in
//products#prodcolUsertable).

By default, the accref is the path to the file relative to the inputs directory; this
is also what /getproduct expects for local products. You can of course enter
URLs to other places.

For local files, you are strongly encouraged to keep the accref URL- and shell-
clean, the most important reason being your users’ sanity. Another is that
obscore in the current implementation does no URL escaping for local files. So,
just don’t use characters like like +, the ampersand, apostrophes and so on;
the default accref parser will reject those anyway. Actually, try making do with
alphanumerics, the underscore, the dash, and the dot, ok?

owner and embargo let you introduce access control. Embargo is a date at
which the product will become publicly available. As long as this date is in the
future, only authenticated users belonging to the group owner are allowed to
access the product.

In addition, the mixin arranges for the products to be added to the system table
products, which is important when delivering the files.

Tables mixing this in should be fed from grammars using the //products#define
row filter.

The //scs#positions Mixin

A mixin adding standardized columns for equatorial positions to the table.

It consists of the fields alphaFloat, deltaFloat (float angles in degrees, J2000.0)
and c_x, c_y, c_z (intersection of the radius vector to alphaFloat, deltaFloat
with the unit sphere).

You will usually use it in conjunction with the //scs#eqFloat procDef that
preparse these fields for you.

Thus, you could say:

<proc procDef="//scs#eqFloat">
<arg name="alpha">alphaSrc</arg>
<arg name="delta">deltaSrc</arg>

</proc>

156

Note, however, that it’s usually much better to not mess with the table structure
and handle positions using the q3cindex mixin.

The //scs#q3cindex Mixin

A mixin adding an index to the main equatorial positions.

This is what you usually want if your input data already has "sane" (i.e., ICRS
or at least J2000) positions or you convert the positions manually.

You have to designate exactly one column with the ucds pos.eq.ra;meta.main
pos.eq.dec;meta.main, respectively. These columns receive the positional index.

This will fail without the q3c extension to postgres.

The //siap#bbox Mixin

A table mixin for simple support of SIAP based on hand-made bboxes.

The columns added into the tables include

∙ (certain) FITS WCS headers
∙ imageTitle (interpolateString should come in handy for these)
∙ instId -- some id for the instrument used
∙ dateObs -- MJD of the "characteristic" observation time
∙ the bandpass* values. You’re on your own with them...
∙ the values of the //products#table mixin.
∙ mimetype -- the mime type of the product.
∙ the primaryBbox, secondaryBbox, centerAlpha and center-

Delta, nAxes, pixelSize, pixelScale, wcs* fields calculated by
the computeBboxSIAPFields macro.

(their definition is in the siap system RD)

Tables mixing in //siap#bbox can be used for SIAP querying and automatically
mix in the products table mixin.

To feed these tables, use the //siap#computeBbox and //siap#setMeta procs.
Since you are dealing with products, you will also need the //products#define
rowgen in your grammar.

If you have pgSphere, you definitely should use the pgs mixin in preference to
this.

157

The //siap#pgs Mixin

A table mixin for simple support of SIAP.

The columns added into the tables include

∙ (certain) FITS WCS headers
∙ imageTitle (interpolateString should come in handy for these)
∙ instId -- some id for the instrument used
∙ dateObs -- MJD of the "characteristic" observation time
∙ the bandpass* values. You’re on your own with them...
∙ the values of the product mixin.
∙ mimetype -- the mime type of the product.
∙ the coverage, centerAlpha and centerDelta, nAxes, pixelSize,

pixelScale, wcs* fields calculated by the computePGS macro.

(their definition is in the siap system RD)

Tables mixing in pgs can be used for SIAP querying and automatically mix in
the products table mixin.

To feed these tables, use the //siap#computePGS and //siap#setMeta procs.
Since you are dealing with products, you will also need the //products#define
rowgen in your grammar.

The //slap#basic Mixin

This mixin is for tables serving SLAP services, i.e., tables with spectral lines.
It does not contain all "optional" columns, hence the name basic. We’d do
"advanced", too, if there’s demand.

Use the //slap#fillBasic procDef to populate such tables.

The //ssap#hcd Mixin

This mixin is for "homogeneous" data collections, where homogeneous means
that all values in hcd_outpars are constant for all datasets in the collection.
This is usually the case if they all come from one instrument.

Rowmakers for tables using this mixin should use the //ssap#setMeta proc
application.

Do not forget to call the //products#define row filter in grammars feeding
tables mixing this in. At the very least, you need to say:

158

<rowfilter procDef="//products#define">
<bind name="table">"mySchema.myTableName"</bind>

</rowfilter>

This mixin has the following parameters:

Parameter collection defaults to __NULL__; ivo id of the originating collection;
ssa:DataID.Collection

Parameter creationType defaults to __NULL__; Process used to produce the
data (zero or more of archival, cutout, filtered, mosaic, projection, spec-
tralExtraction, catalogExtraction); ssa:DataID.CreationType

Parameter creator defaults to __NULL__; Creator designation;
ssa:DataID.Creator

Parameter dataSource defaults to __NULL__; Generation type (typically, one
survey, pointed, theory, custom, artificial); ssa:DataID.DataSource

Parameter fluxCalibration Type of flux calibration (one of AB-
SOLUTE, RELATIVE, NORMALIZED, or UNCALIBRATED);
ssa:Char.FluxAxis.Calibration

Parameter fluxSI defaults to __NULL__; SI conversion factor for fluxes in the
spectrum instance (not the SSA metadata) in Osuna-Salgado convention;
ssa:Dataset.FluxSI (you probably want to leave this empty)

Parameter fluxUCD defaults to phot.flux.density;em.wl; ucd of the flux col-
umn, like phot.count, phot.flux.density, etc. Default is for flux over wave-
length; ssa:Char.FluxAxis.Ucd

Parameter fluxUnit Flux unit used by the spectra and in SSA char metadata.
This must be a VOUnit string (use a single blank if your spectrum is not
calibrated).

Parameter instrument defaults to __NULL__; Instrument or code used to pro-
duce these datasets; ssa:DataID.Instrument

Parameter publisher defaults to \metaString{publisherID}; Publisher IVO (by
default taken from the DC config); ssa:Curation.Publisher

Parameter reference defaults to __NULL__; URL or bibcode of a publication
describing this data; ssa:Curation.Reference

Parameter spectralCalibration defaults to __NULL__; Type of wavelength Cal-
ibration (one of ABSOLUTE, RELATIVE, NORMALIZED, or UNCALI-
BRATED); ssa:Char.SpectralAxis.Calibration

159

Parameter spectralResolution defaults to NaN; Resolution on the spectral
axis; you must give this as FWHM wavelength in meters here. Approxi-
mate as necessary; ssa:Char.SpectralAxis.Resolution

Parameter spectralSI defaults to __NULL__; SI conversion factor of frequency
or wavelength in the spectrum instance (not the SSA metadata, they are
all in meters); ssa:Dataset.SpectralSI (you probably want to leave this
empty)

Parameter spectralUCD defaults to em.wl; ucd of the spectral column, like
em.freq or em.energy; default is wavelength; ssa:Char.SpectralAxis.Ucd

Parameter spectralUnit Spectral unit used by the spectra (SSA char meta-
data always is wavelength in meters). This must be a VOUnit string (use
a single blank if your spectrum is not calibrated).

Parameter statFluxError defaults to __NULL__; Statistical error in flux;
ssa:Char.FluxAxis.Accuracy.StatError

Parameter statSpaceError defaults to __NULL__; Statistical error in position
in degrees; ssa:Char.SpatialAxis.Accuracy.StatError

Parameter statSpectError defaults to __NULL__; Statistical error in wave-
length (units of specralSI); ssa:Char.SpectralAxis.Accuracy.StatError

Parameter sysFluxError defaults to __NULL__; Systematic error in flux;
ssa:Char.FluxAxis.Accuracy.SysError

Parameter sysSpectError defaults to __NULL__; Systematic error in wave-
length (in m); ssa:Char.SpectralAxis.Accuracy.SysError

Parameter timeSI defaults to __NULL__; SI conversion factor for times in
Osuna-Salgado convention; ssa:DataSet.TimeSI (you probably want to
leave this empty)

The //ssap#mixc Mixin

This mixin is for spectral data collections mixing products from various sources.

Rowmakers for tables using this mixin should use the //ssap#setMeta and the
//ssap#setMixcMeta proc applications.

There are some limitations to the variability; in particular, all spectra must have
the same types of axes (i.e., frequency, wavelength, or energy) with identical
units. If you don’t have that, either leave the respective metadata empty or
homogenize it in the rowmaker. Anything else cannot be sensibly declared, not
to mention searched.

160

Do not forget to call the //products#define row filter in grammars feeding
tables mixing this in. At the very least, you need to say:

<rowfilter procDef="//products#define">
<bind name="table">"mySchema.myTableName"</bind>

</rowfilter>

This mixin has the following parameters:

Parameter fluxSI defaults to __NULL__; SI conversion factor for fluxes in the
spectrum instance (not the SSA metadata) in Osuna-Salgado convention;
ssa:Dataset.FluxSI (you probably want to leave this empty)

Parameter fluxUCD defaults to phot.flux.density;em.wl; ucd of the flux col-
umn, like phot.count, phot.flux.density, etc. Default is for flux over wave-
length; ssa:Char.FluxAxis.Ucd

Parameter fluxUnit Flux unit used by the spectra and in SSA char metadata.
This must be a VOUnit string (use a single blank if your spectrum is not
calibrated).

Parameter spectralSI defaults to __NULL__; SI conversion factor of frequency
or wavelength in the spectrum instance (not the SSA metadata, they are
all in meters); ssa:Dataset.SpectralSI (you probably want to leave this
empty)

Parameter spectralUCD defaults to em.wl; ucd of the spectral column, like
em.freq or em.energy; default is wavelength; ssa:Char.SpectralAxis.Ucd

Parameter spectralUnit Spectral unit used by the spectra (SSA char meta-
data always is wavelength in meters). This must be a VOUnit string (use
a single blank if your spectrum is not calibrated).

Parameter timeSI defaults to __NULL__; SI conversion factor for times in
Osuna-Salgado convention; ssa:DataSet.TimeSI (you probably want to
leave this empty)

The //ssap#sdm-instance Mixin

This mixin is intended for tables that get serialized into documents conforming
to the Spectral Data Model 1, specifically to VOTables

The input to such tables comes from ssa tables (hcd, in this case). Their
columns (and params) are transformed into params here.

161

The mixin adds two columns (you could add more if, e.g., you had errors de-
pending on the spectral or flux value), spectral (wavelength or the like) and
flux. Their metadata is taken from the ssa fields where available (ssa_fluxucd
as flux UCD, ssa_fluxunit etc).

This mixin in action could look like this:

<table id="instance" onDisk="False">
<mixin ssaTable="spectra"

fluxUnit="Jy"
>//ssap#sdm-instance</mixin>

</table>

This mixin has the following parameters:

Parameter fluxDescription defaults to The dependent variable of this

spectrum (see the ucd for its physical meaning); Description for the flux
column

Parameter spectralDescription defaults to The independent variable of

this spectrum (see its ucd to figure out whether it’s a wavelength,

frequency, or energy); Description for the spectral column

Parameter spectralUCDOverride Force UCD of the spectral column (don’t
use this)

Parameter spectralUnitOverride Force unit of the spectral column (don’t use
this)

Parameter ssaTable The SSAP (HCD) instance table to take the params from

Triggers
In the context of the GAVO DC, triggers are conditions on rows -- either the raw
rows emitted by grammars if they are used within grammars, or the rows about
to be shipped to a table if they are used within tables. Triggers may be used
recursively, i.e., triggers may contain more triggers. Child triggers are normally
or-ed together.

Currently, there is one useful top-level trigger, the element ignoreOn. If an
ignoreOn is triggered, the respective row is silently dropped (actually, you ig-
noreOn has a bail attribute that allows you to raise an error if the trigger is
pulled; this is mainly for debugging).

The following triggers are defined:

162

Element and

A trigger that is true when all its children are true.

Atomic Children

∙ name (unicode string; defaults to ’unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

Structure Children

∙ triggers (contains any of and,keyPresent,keyNull,keyIs,keyMissing,not and
may be repeated zero or more times) -- One or more conditions joined
by an implicit logical or. See Triggers for information on what can stand
here.

Element keyIs

A trigger firing when the value of key in row is equal to the value given.

Missing keys are always accepted. You can define an SQL type; value will then
be interpreted as a literal for this type, and this literal’s value will be compared
against the key’s value. This is only needed for grammars like fitsProductGram-
mar that actually yield typed values.

Atomic Children

∙ key (unicode string; defaults to <Undefined>) -- Key to check

∙ name (unicode string; defaults to ’unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

∙ type (unicode string; defaults to ’text’) -- An SQL type the python equiv-
alent of which the value should be converted to before checking.

∙ value (unicode string; defaults to <Undefined>) -- The string value to
fire on.

Element keyMissing

A trigger firing if a certain key is missing in the dict.

This is equivalent to:

<not><keyPresent key="xy"/></not>

163

Atomic Children

∙ key (unicode string; defaults to <Undefined>) -- Key to check

∙ name (unicode string; defaults to ’unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

Element keyNull

A trigger firing if a certain key is missing or NULL/None

Atomic Children

∙ key (unicode string; defaults to <Undefined>) -- Key to check

∙ name (unicode string; defaults to ’unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

Element keyPresent

A trigger firing if a certain key is present in the dict.

Atomic Children

∙ key (unicode string; defaults to <Undefined>) -- Key to check

∙ name (unicode string; defaults to ’unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

Element not

A trigger that is false when its children, or-ed together, are true and vice versa.

Atomic Children

∙ name (unicode string; defaults to ’unnamed’) -- A name that should help
the user figure out what trigger caused some condition to fire.

Structure Children

∙ triggers (contains any of and,keyPresent,keyNull,keyIs,keyMissing,not and
may be repeated zero or more times) -- One or more conditions joined
by an implicit logical or. See Triggers for information on what can stand
here.

164

Renderers Available
The following renderers are available for allowing and URL creation. The pa-
rameter style is relevant when adapting condDescs‘ or table based cores to
renderers:

∙ With clear, parameters are just handed through

∙ With form, suitable parameters are turned into vizier-like expressions

∙ With pql, suitable parameters are turned into their PQL counterparts,
letting you specify ranges and such.

Unchecked renderers can be applied to any service and need not be explicitely
allowed by the service.

The admin Renderer

This renderer’s parameter style is "clear".

A renderer allowing to block and/or reload services.

This renderer could really be attached to any service since it does not call it,
but it usually lives on //services/overview. It will always require authentication.

It takes the id of the RD to administer from the path segments following the
renderer name.

By virtue of builtin vanity, you can reach the admin renderer at /seffe, and thus
you can access /seffe/foo/q to administer the foo/q RD.

The api Renderer

This renderer’s parameter style is "dali".

A renderer that works like a VO standard renderer but that doesn’t actually
follow a given protocol.

Use this for improvised APIs. The default output format is a VOTable,
and the errors come in VOSI VOTables. The renderer does, however, eval-
uate basic DALI parameters. You can declare that by including <FEED
source="//pql#DALIPars"/> in your service.

These will return basic serice metadata if passed MAXREC=0.

165

The availability Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

A renderer for a VOSI availability endpoint.

An endpoint with this renderer is automatically registered for every service. The
answers can be configured using the admin renderer.

The capabilities Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

A renderer for a VOSI capability endpoint.

An endpoint with this renderer is automatically registered for every service. The
responses contain information on what renderers ("interfaces") are available for
a service and what properties they have.

The custom Renderer

This renderer’s parameter style is "clear".

A renderer defined in a python module.

To define a custom renderer write a python module and define a class MainPage
inheriting from gavo.web.ServiceBasedPage.

This class basically is a nevow resource, i.e., you can define docFactory, locate-
Child, renderHTTP, and so on.

To use it, you have to define a service with the resdir-relative path to the module
in the customPage attribute and probably a nullCore. You also have to allow
the custom renderer (but you may have other renderers, e.g., static).

If the custom page is for display in web browsers, define a class method is-
Browseable(cls, service) returning true. This is for the generation of links like
"use this service from your browser" only; it does not change the service’s be-
haviour with your renderer.

There should really be a bit more docs on this, but alas, there’s none as yet.

The dlasync Renderer

This renderer’s parameter style is "pql".

A renderer for asynchronous datalink.

166

The dlget Renderer

This renderer’s parameter style is "clear".

A renderer for data processing by datalink cores.

This must go together with a datalink core, nothing else will do.

This renderer will actually produce the processed data. It must be complemented
by the dlmeta renderer which allows retrieving metadata.

The dlmeta Renderer

This renderer’s parameter style is "clear".

A renderer for data processing by datalink cores.

This must go together with a datalink core, nothing else will do.

This renderer will return the links and services applicable to one or more pub-
DIDs.

See Datalink Cores for more information.

The docform Renderer

This renderer’s parameter style is "form".

A renderer displaying a form and delivering core’s result as a document.

The core must return a pair of mime-type and content; on errors, the form is
redisplayed.

This is mainly useful with custom cores doing weird things. This renderer will
not work with dbBasedCores and similar.

The examples Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

A renderer for examples for service usage.

This renderer formats _example meta items in its service. Its output is XHTML
compliant to VOSI examples; clients can parse it to, for instance, fill forms for
service operation or display examples to users.

167

The examples make use of RDFa to convey semantic markup. To see what kind
of semantics is contained, try http://www.w3.org/2012/pyRdfa/Overview.html
and feed it the example URL of your service.

The default content of _example is ReStructuredText, and really, not much else
makes sense. An example for such a meta item can be viewed by executing gavo

admin dumpDF //userconfig, in the tapexamples STREAM.

To support annotation of things within the example text, DaCHS defines several
RST extensions, both interpreted text roles (used like :role-name:‘content with

blanks‘) and custom directives (used to mark up blocks introduced by a single
line like .. directive-name :: (the blanks before and after the directive name
are significant).

Here’s the custom interpreted text roles:

∙ dl-id : An publisher DID a service returns data for (used in datalink ex-
amples)

∙ taptable: A (fully qualified) table name a TAP example query is (partic-
ularly) relevant for; in HTML, this is also a link to the table description.

∙ genparam: A "generic parameter" as defined by DALI. The values of these
have the form param(value), e.g., :genparam:‘POS(32,4)‘. Right now, not
parantheses are allowed in the value. Complain if this bites you.

These are the custom directives:

∙ tapquery : The query discussed in a TAP example.

The external Renderer

This renderer’s parameter style is "clear".

A renderer redirecting to an external resource.

These try to access an external publication on the parent service and ask it for
an accessURL. If it doesn’t define one, this will lead to a redirect loop.

In the DC, external renderers are mainly used for registration of third-party
browser-based services.

168

http://www.w3.org/2012/pyRdfa/Overview.html

The fixed Renderer

This renderer’s parameter style is "clear".

A renderer that renders a single template.

Use something like <template key="fixed">res/ft.html</template> in the enclos-
ing service to tell the fixed renderer where to get this template from.

In the template, you can fetch parameters from the URL using something like
<n:invisible n:data="parameter FOO" n:render="string"/>; you can also define
new render and data functions on the service using customRF and customDF.

This is mainly for applet/browser app support; See the specview.html or vo-
plot.html templates as an example. This is the place to add further render or
data function for programs like those.

Built-in services for such browser apps should go through the //run RD.

The form Renderer

This renderer’s parameter style is "form".

The "normal" renderer within DaCHS for web-facing services.

It will display a form and allow outputs in various formats.

It also does error reporting as long as that is possible within the form.

The get Renderer

This renderer’s parameter style is "clear".

The renderer used for delivering products.

This will only work with a ProductCore since the resulting data set has to
contain products.Resources. Thus, you probably will not use this in user RDs.

The info Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

A renderer showing all kinds of metadata on a service.

This renderer produces the default referenceURL page. To change its appear-
ance, override the serviceinfo.html template.

169

The logout Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

logs users out.

With a valid authorization header, this emits a 401 unauthorized, without one,
it displays a logout page.

The mimg.jpeg Renderer

This renderer’s parameter style is "form".

A machine version of the JpegRenderer -- no vizier expressions, hardcoded pa-
rameters, plain text errors.

This should not have been part of DaCHS proper. It will be removed.

The mupload Renderer

This renderer’s parameter style is "form".

A renderer allowing for updates to individual records using file uploads.

The difference to Uploader is that no form-redisplay will be done. All errors are
reported through HTTP response codes and text strings. It is likely that this
renderer will change and/or go away.

The pubreg.xml Renderer

This renderer’s parameter style is "clear".

A renderer that works with registry.oaiinter to provide an OAI-PMH interface.

The core is expected to return a stanxml tree.

The qp Renderer

This renderer’s parameter style is "clear".

The Query Path renderer extracts a query argument from the query path.

Basically, whatever segments are left after the path to the renderer are taken
and fed into the service. The service must cooperate by setting a queryField
property which is the key the parameter is assigned to.

170

QPRenderers cannot do forms, of course, but they can nicely share a service
with the form renderer.

To adjust the results’ appreance, you can override resultline (for when there’s
just one result row) and resulttable (for when there is more than one result row)
templates.

The rdinfo Renderer

This renderer’s parameter style is "clear".

A renderer for displaying various properties about a resource descriptor.

This renderer could really be attached to any service since it does not call it,
but it usually lives on //services/overview.

By virtue of builtin vanity, you can reach the rdinfo renderer at /browse, and
thus you can access /browse/foo/q to view the RD infos. This is the form used
by table registrations.

The scs.xml Renderer

This renderer’s parameter style is "pql".

A renderer for the Simple Cone Search protocol.

These do their error signaling in the value attribute of an INFO child of RE-
SOURCE.

You must set the following metadata items on services using this renderer if you
want to register them:

∙ testQuery.ra, testQuery.dec -- A position for which an object is present
within 0.001 degrees.

The siap.xml Renderer

This renderer’s parameter style is "pql".

A renderer for a the Simple Image Access Protocol.

These have errors in the content of an info element, and they support metadata
queries.

For registration, services using this renderer must set the following metadata
items:

171

∙ sia.type -- one of Cutout, Mosaic, Atlas, Pointed, see SIAP
spec

You should set the following metadata items:

∙ testQuery.pos.ra, testQuery.pos.dec -- RA and Dec for a query
that yields at least one image

∙ testQuery.size.ra, testQuery.size.dec -- RoI extent for a query
that yields at least one image.

You can set the following metadata items (there are defaults on them that
basically communicate there are no reasonable limits on them):

∙ sia.maxQueryRegionSize.(long|lat)
∙ sia.maxImageExtent.(long|lat)
∙ sia.maxFileSize
∙ sia.maxRecord (default dalHardLimit global meta)

The siap2.xml Renderer

This renderer’s parameter style is "dali".

A renderer for SIAPv2.

In general, if you want a SIAP2 service, you’ll need something like the obscore
view in the underlying table.

The slap.xml Renderer

This renderer’s parameter style is "pql".

A renderer for the simple line access protocol SLAP.

For registration, you must set the following metadata on services using the
slap.xml renderer:

There’s two mandatory metadata items for these:

∙ slap.dataSource -- one of observational/astrophysical, observa-
tional/laboratory, or theoretical

∙ slap.testQuery -- parameters that lead to a non-empty response. The way
things are written in DaCHS, MAXREC=1 should in general work.

172

The soap Renderer

This renderer’s parameter style is "clear".

A renderer that receives and formats SOAP messages.

This is for remote procedure calls. In particular, the renderer takes care that you
can obtain a WSDL definition of the service by appending ?wsdl to the access
URL.

The ssap.xml Renderer

This renderer’s parameter style is "pql".

A renderer for the simple spectral access protocol.

For registration, you must set the following metadata on services using the
ssap.xml renderer:

∙ ssap.dataSource -- survey, pointed, custom, theory, artificial
∙ ssap.testQuery -- a query string that returns some data; RE-

QUEST=queryData is added automatically

Other SSA metadata includes:

∙ ssap.creationType -- archival, cutout, filtered, mosaic, pro-
jection, spectralExtraction, catalogExtraction (defaults to
archival)

∙ ssap.complianceLevel -- set to "query" when you don’t deliver
SDM compliant spectra; otherwise don’t say anything, DaCHS
will fill in the right value.

Services with this renderer can have a datalink property; if present, it must
point to a datalink service producing SDM-compliant spectra; this is for doing
cutouts and similar.

Services with ssap cores may also have a defaultRequest property. By default,
requests without a REQUEST parameter will be rejected. If you set defaultRe-
quest to querydata, such request will be processed as if REQUEST were given.

173

The static Renderer

This renderer’s parameter style is "clear".

A renderer that just hands through files.

The standard operation here is to set a staticData property pointing to a resdir-
relative directory used to serve files for. Indices for directories are created.

You can define a root resource by giving an indexFile property on the service.

The tableMetadata Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

A renderer for a VOSI table metadata endpoint.

An endpoint with this renderer is automatically registered for every service. The
responses contain information on the tables exposed by a given service.

The tableinfo Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

A renderer for displaying table information.

It really doesn’t use the underlying service, but conventionally, it is run on
__system__/dc_tables/show.

The tablenote Renderer

This renderer’s parameter style is "clear". This is an unchecked renderer.

A renderer for displaying table notes.

It takes a schema-qualified table name and a note tag in the segments.

This does not use the underlying service, so it could and will run on any service.
However, you really should run it on __system__/dc_tables/show, and there’s
a built-in vanity name tablenote for this.

The tap Renderer

This renderer’s parameter style is "clear".

A renderer speaking all of TAP (including sync, async, and VOSI).

Basically, this just dispatches to the sync and async resources.

174

The upload Renderer

This renderer’s parameter style is "form".

A renderer allowing for updates to individual records using file upload.

This renderer exposes a form with a file widget. It is likely that the interface
will change.

The uws.xml Renderer

This renderer’s parameter style is "pql".

A renderer speaking UWS.

This is for asynchronous exection of larger jobs. Operators will normally use
this together with a custom core or a python core.

See Custom UWSes for details.

Predefined Procedures

Procedures available for rowmaker apply

//epntap#populate

Sets metadata for an epntap data set, including its products definition.

The values are left in vars, so you need to do manual copying, e.g., using
idmaps="*".

Setup parameters for the procedure are:

Late parameter access_format The standard text proposes the standard
names VOTable, Fits, CSV, ASCII, PDS, as well as image formats.

Late parameter c1_max defaults to None; First coordinate (e.g., longitude,
’x’), upper limit

Late parameter c1_min defaults to None; First coordinate (e.g., longitude,
’x’), lower limit.

Late parameter c1_resol_max defaults to None; Resolution in the first coor-
dinate, upper limit

Late parameter c1_resol_min defaults to None; Resolution in the first coor-
dinate, lower limit.

175

Late parameter c2_max defaults to None; Second coordinate (e.g., latitude,
’y’), upper limit

Late parameter c2_min defaults to None; Second coordinate (e.g., latitude,
’y’), lower limit.

Late parameter c2_resol_max defaults to None; Resolution in the second
coordinate, upper limit

Late parameter c2_resol_min defaults to None; Resolution in the second co-
ordinate, lower limit.

Late parameter c3_max defaults to None; Third coordinate (e.g., height, ’z’),
upper limit

Late parameter c3_min defaults to None; Third coordinate (e.g., height, ’z’),
lower limit.

Late parameter c3_resol_max defaults to None; Resolution in the third co-
ordinate, upper limit

Late parameter c3_resol_min defaults to None; Resolution in the third coor-
dinate, lower limit.

Late parameter collection_id defaults to None; Identifier of the collection this
piece of data belongs to

Late parameter dataproduct_type defaults to None; The high-level organi-
zation of the data product described (image, spectrum, etc)

Late parameter dataset_id defaults to "1"; Unless you understand the im-
plications, leave this at the default. In particular, note that this is not
a dataset id in the VO sense, so this should normally not be whatever
standardPubDID generates.

Late parameter emergence_max defaults to None; Emergence angle during
data acquisition, upper limit

Late parameter emergence_min defaults to None; Emergence angle during
data acquisition, lower limit.

Late parameter incidence_max defaults to None; Incidence angle (solar
zenithal angle) during data acquisition, upper limit

Late parameter incidence_min defaults to None; Incidence angle (solar
zenithal angle) during data acquisition, lower limit.

176

Late parameter index_ defaults to \rowsMade; A numeric reference for the
item. By default, this is just the row number. As this will (usually)
change when new data is added, you should override it with some unique
integer number specific to the data product when there is such a thing.

Late parameter instrument_host_name Name of the observatory or space-
craft that the observation originated from; for ground-based data,
use IAU observatory codes, http://www.minorplanetcenter.net/iau/lists/
ObsCodesF.html, for space-borne instruments use http://nssdc.gsfc.nasa.
gov/nmc/

Late parameter instrument_name defaults to None; Service providers are in-
vited to include multiple values for instrumentname, e.g., complete name
+ usual acronym. This will allow queries on either ’VISIBLE AND IN-
FRARED THERMAL IMAGING SPECTROMETER’ or VIRTIS to pro-
duce the same reply.

Late parameter measurement_type defaults to None; UCD(s) defining the
data, with multiple entries separated by space characters.

Late parameter phase_max defaults to None; Phase angle during data acqui-
sition, upper limit

Late parameter phase_min defaults to None; Phase angle during data acqui-
sition, lower limit.

Late parameter publisher defaults to None; A short string identifying the en-
tity running the data service used.

Late parameter reference defaults to None; A bibcode or URL of a publication
about the data.

Late parameter resource_type defaults to None; ’granule’ if the row describes
a smallest element reachable in a service (e.g., a file), or ’dataset’ for an
aggregate of granules.

Late parameter sampling_step_max defaults to None; Separation between
the centers of two adjacent filters or channels, upper limit

Late parameter sampling_step_min defaults to None; Separation between
the centers of two adjacent filters or channels, lower limit.

Late parameter service_title defaults to None; The title of the data service
producing this row.

Late parameter spatial_frame_type Flavor of the coordinate system (this
also fixes the meanings of c1, c2, and c3). Values defined by EPN-TAP
include celestial, body, cartesian, cylindrical, spherical, healpix.

177

http://www.minorplanetcenter.net/iau/lists/ObsCodesF.html
http://www.minorplanetcenter.net/iau/lists/ObsCodesF.html
http://nssdc.gsfc.nasa.gov/nmc/
http://nssdc.gsfc.nasa.gov/nmc/

Late parameter spectral_range_max defaults to None; Spectral domain of
the data, upper limit

Late parameter spectral_range_min defaults to None; Spectral domain of
the data, lower limit.

Late parameter spectral_resolution_max defaults to None; FWHM of the
instrument profile, upper limit

Late parameter spectral_resolution_min defaults to None; FWHM of the
instrument profile, lower limit.

Late parameter t_exp_max defaults to None; Integration time of the mea-
surement, upper limit

Late parameter t_exp_min defaults to None; Integration time of the mea-
surement, lower limit.

Late parameter t_sampling_step_max defaults to None; Sampling time for
measurements of dynamical phenomena, upper limit

Late parameter t_sampling_step_min defaults to None; Sampling time for
measurements of dynamical phenomena, lower limit.

Late parameter target_class defaults to "UNKNOWN"; The type of the target;
choose from asteroid, dwarf_planet, planet, satellite, comet, exoplanet,
interplanetary_medium, ring, sample, sky, spacecraft, spacejunk, star

Late parameter target_name Name of the target object, preferably accord-
ing to the official IAU nomenclature. As appropriate, take these from
the exoplanet encyclopedia http://exoplanet.eu, the meteor catalog at
http://www.lpi.usra.edu/meteor/, the catalog of stardust samples at
http://curator.jsc.nasa.gov/stardust/catalog/

Late parameter target_region defaults to None; This is a complement to the
target name to identify a substructure of the target that was being ob-
served (e.g., Atmosphere, Surface). Take terms from them Spase dictio-
nary at http://www.spase-group.org or the IVOA thesaurus.

Late parameter time_max defaults to None; Acquisition stop time (as JD)

Late parameter time_min defaults to None; Acquisition start time (as JD)

Late parameter time_scale defaults to "UNKNOWN"; Time scale used for the
various times, as given by IVOA’s STC data model. Choose from TT,
TDB, TOG, TOB, TAI, UTC, GPS, UNKNOWN

178

http://exoplanet.eu
http://www.lpi.usra.edu/meteor/
http://curator.jsc.nasa.gov/stardust/catalog/
http://www.spase-group.org

//procs#dictMap

Maps input values through a dictionary.

The dictionary is given in its python form here. This apply only operates on
the rawdict, i.e., the value in vars is changed, while nothing is changed in the
rowdict.

Setup parameters for the procedure are:

Parameter default defaults to KeyError; Default value for missing keys (with
this at the default, an error is raised)

Parameter key Name of the input key to map

Parameter mapping Python dictionary literal giving the mapping

//procs#fullQuery

runs a free query against the data base and enters the first result record into
vars.

locals() will be passed as data, so you can define more bindings and refer to
their keys in the query.

Setup parameters for the procedure are:

Parameter errCol defaults to ’<unknown>’; a column name to use when raising
a ValidationError on failure.

Parameter query an SQL query

//procs#mapValue

is an apply proc that translates values via a utils.NameMap

Destination may of course be the source field (though that messes up idempo-
tency of macro expansion, which shouldn’t usually hurt).

The format of the mapping file is:

<target key><tab><source keys>

179

where source keys is a whitespace-seperated list of values that should be mapped
to target key (sorry the sequence’s a bit unusual).

A source key must be encoded quoted-printable. This usually doesn’t matter
except when it contains whitespace (a blank becomes =20) or equal signs (which
become =3D).

Here’s an example application for a filter that’s supposed to translate some
botched object names:

<apply name="cleanObject" procDef="//procs#mapValue">
<bind name="destination">"cleanedObject"</bind>
<bind name="failuresMapThrough">True</bind>
<bind name="value">@preObject</bind>
<bind name="sourceName">"flashheros/res/namefixes.txt"</bind>

</apply>

The input could look like this, with a Tab char written as " <TAB> " for clarity:

alp Cyg <TAB> aCyg alphaCyg

Nova Cygni 1992 <TAB> Nova=20Cygni=20’92 Nova=20Cygni

Setup parameters for the procedure are:

Parameter destination name of the field the mapped value should be written
into

Parameter failuresAreNone defaults to False; Rather than raise an error,
yield NULL for values not in the mapping

Parameter failuresMapThrough defaults to False; Rather than raise an error,
yield the input value if it is not in the mapping (this is for ’fix some’-like
functions and only works when failureAreNone is False)

Parameter logFailures defaults to False; Log non-resolved names?

Parameter sourceName An inputsDir-relative path to the NameMap source
file.

Late parameter value The value to be mapped.

180

//procs#resolveObject

Resolve identifiers to simbad positions.

It caches query results (positive as well as negative ones) in cacheDir. To avoid
flooding simbad with repetetive requests, it raises an error if this directory is
not writable.

It leaves J2000.0 positions as floats in the simbadAlpha and simbadDelta vari-
ables.

Setup parameters for the procedure are:

Late parameter identifier The identifier to be resolved.

Parameter ignoreUnknowns defaults to True; Return Nones for unknown ob-
jects? (if false, ValidationErrors will be raised)

Parameter logUnknowns defaults to False; Write unresolved object names to
the info log

//procs#simpleSelect

Fill variables from a simple database query.

The idea is to obtain a set of values from the data base into some columns
within vars (i.e., available for mapping) based on comparing a single input value
against a database column. The query should always return exactly one row. If
more rows are returned, the first one will be used (which makes the whole thing
a bit of a gamble), if none are returned, a ValidationError is raised.

Setup parameters for the procedure are:

Parameter assignments mapping from database column names to vars col-
umn names, in the format {<db colname>:<vars name>}"

Parameter column the column to compare the input value against

Parameter errCol

defaults to ’<unknown>’; UNDOCUMENTED

Parameter table name of the database table to query

Late parameter val UNDOCUMENTED

181

//siap#computeBbox

Computes WCS information for SIA tables from FITS WCS keys.

It takes no arguments but expects WCS-like keywords in rowdict, i.e., CRVAL1,
CRVAL2 (interpreted as float deg), CRPIX1, CRPIX2 (pixel corresponding to
CRVAL1, CRVAL2), CUNIT1, CUNIT2 (pixel scale unit, we bail out if it isn’t
deg and assume deg when it’s not present), CDn_n (the transformation matrix;
substitutable by CDELTn), NAXISn (the image size).

Records without or with insufficient wcs keys are furnished with all-NULL wcs
info if the missingIsError setup parameter is False, else they bomb out with a
DataError (the default).

Use either computePGS or computeBbbox depending on what mixin the table
has. PGS is much preferable.

Setup parameters for the procedure are:

Parameter missingIsError defaults to True; Throw an exception when no
WCS information can be located.

Parameter naxis defaults to "1,2"; Comma-separated list of integer axis in-
dices (1=first) to be considered for WCS

//siap#computePGS

Computes WCS information for SIA tables from FITS WCS keys.

It takes no arguments but expects WCS-like keywords in rowdict, i.e., CRVAL1,
CRVAL2 (interpreted as float deg), CRPIX1, CRPIX2 (pixel corresponding to
CRVAL1, CRVAL2), CUNIT1, CUNIT2 (pixel scale unit, we bail out if it isn’t
deg and assume deg when it’s not present), CDn_n (the transformation matrix;
substitutable by CDELTn), NAXISn (the image size).

Records without or with insufficient wcs keys are furnished with all-NULL wcs
info if the missingIsError setup parameter is False, else they bomb out with a
DataError (the default).

Use either computePGS or computeBbbox depending on what mixin the table
has. PGS is much preferable.

Setup parameters for the procedure are:

Parameter missingIsError defaults to True; Throw an exception when no
WCS information can be located.

Parameter naxis defaults to "1,2"; Comma-separated list of integer axis in-
dices (1=first) to be considered for WCS

182

//siap#getBandFromFilter

sets the bandpassId, bandpassUnit, bandpassRefval, bandpassHi, and band-
passLo from a set of standard band Ids.

The bandpass ids known are contained in a file supplied file that you should
consult for supported values. Run gavo admin dumpDF data/filters.txt for
details.

All values filled in here are in meters.

If this is used, it must run after //siap#setMeta since setMeta clobbers our
result fields.

Setup parameters for the procedure are:

Parameter sourceCol defaults to None; Name of the column containing the fil-
ter name; leave at default None to take the band from result[’bandpassId’],
where such information would be left by siap#setMeta.

//siap#setMeta

sets siap meta and product table fields.

These fields are common to all SIAP implementations.

If you define the bandpasses yourself, do not change bandpassUnit and give all
values in Meters. If you do change it, at least obscore would break, but probably
more. For optical images, we recommend to fill out bandpassId and then let
the //siap#getBandFromFilter apply compute the actual limits. If your band
is not known, please supply the necessary information to the authors.

Do not use idmaps="*" when using this procDef; it writes directly into result,
and you would be clobbering what it does.

Setup parameters for the procedure are:

Late parameter bandpassHi defaults to None; lower value of wavelength or
frequency

Late parameter bandpassId defaults to None; a rough indicator of the band-
pass, like Johnson bands

Late parameter bandpassLo defaults to None; upper value of the wavelength
or frequency

183

Late parameter bandpassRefval defaults to None; characteristic frequency or
wavelength of the exposure

Late parameter bandpassUnit defaults to "m"; the unit of the bandpassRefval
and friends

Late parameter dateObs defaults to None; the midpoint of the observation;
this can either be a datetime instance, or a float>1e6 (a julian date) or
something else (which is then interpreted as an MJD)

Late parameter instrument defaults to None; a short identifier for the instru-
ment used

Late parameter pixflags defaults to None; processing flags (C atlas image or
cutout, F resampled, X computed without interpolation, Z pixel flux cal-
ibrated, V unspecified visualisation for presentation only)

Late parameter refFrame defaults to ’ICRS’; reference frame of the coordi-
nates (change at your peril)

Late parameter title defaults to None; image title. This should, in as few
characters as possible, convey some idea what the image will show (e.g.,
instrument, object, bandpass

//slap#fillBasic

This apply is intended for rowmakers filling tables mixing in //slap#basic. It
populates vars for all the columns in there; you’ll normally want idmaps="*"
with this apply.

For most of its parameters, it will take them for same-named vars, so you can
slowly build up its arguments through var elements.

Setup parameters for the procedure are:

Late parameter chemical_element defaults to @chemical_element; Element
that makes the transition. It’s probably ok to dump molecule names in
here, too.

Late parameter final_level_energy defaults to @final_level_energy; Energy
of the final state

Late parameter final_name defaults to @final_name; Designation of the final
state

Late parameter id_status defaults to "identified"; Identification status; this
would be identified or unidentified plus possibly uncorrected (but read the
SLAP spec for that).

184

Late parameter initial_level_energy defaults to @initial_level_energy; En-
ergy of the initial state

Late parameter initial_name defaults to @initial_name; Designation of the
initial state

Late parameter linename defaults to @linename; A brief designation for the
line, like ’H alpha’ or ’N III 992.973 A’.

Late parameter pub defaults to @pub; Publication this came from (use a bib-
code).

Late parameter wavelength defaults to @wavelength; Wavelength of the
transition in meters; this will typically be an expression like
int(@wavelength)*1e-10

//ssap#setMeta

Sets metadata for an SSA data set, including its products definition.

The values are left in vars, so you need to do manual copying, e.g., using
idmaps="*", or, if you need to be more specific, idmaps="ssa_*".

Setup parameters for the procedure are:

Late parameter alpha defaults to None; right ascension of target (ICRS de-
grees); ssa:Char.SpatialAxis.Coverage.Location.Value.C1

Late parameter aperture defaults to None; angular diameter of aperture (ex-
pected in degrees); ssa:Char.SpatialAxis.Coverage.Bounds.Extent

Late parameter bandpass defaults to None; bandpass (i.e., rough spectral lo-
cation) of this dataset; ssa:DataID.Bandpass

Late parameter cdate defaults to None; date the file was created (or pro-
cessed; optional); this must be either a string in ISO format, or you need
to parse to a timestamp yourself; ssa:DataID.Date

Late parameter creatorDID defaults to None; id given by the creator (leave
out if not applicable); ssa:DataID.CreatorDID

Late parameter cversion defaults to None; creator assigned version for this file
(should be incremented when it is changed); ssa:DataID.Version

Late parameter dateObs defaults to None; observation midpoint (you can give
a datetime, a string in iso format, a jd, or an mjd, the latter two being
told apart by comparing against 1e6)

185

Late parameter delta defaults to None; declination of target (ICRS degrees);
ssa:Char.SpatialAxis.Coverage.Location.Value.C2

Late parameter dstitle a title for the data set (e.g., instrument, filter, target
in some short form; must be filled in); ssa:DataID.Title

Late parameter length defaults to None; Number of samples in the spectrum;
ssa:Dataset.Length

Late parameter pdate defaults to datetime.datetime.utcnow(); date the file
was last published (in general, the default is fine); ssa:Curation.Date

Late parameter pubDID Id provided by the publisher (i.e., you); this is an
opaque string and must be given; ssa:Curation.PublisherDID

Late parameter redshift defaults to None; source redshift; ssa:Target.Redshift

Late parameter snr defaults to None; signal-to-noise ratio estimated for this
dataset; ssa:Derived.SNR

Late parameter specend defaults to None; upper bound of wavelength interval
(in meters); ssa:Char.SpectralAxis.Coverage.Bounds.Stop

Late parameter specext defaults to None; width of bandpass (in meters of
wavelength); ssa:Char.SpectralAxis.Coverage.Bounds.Extent

Late parameter specmid defaults to None; central wavelength (in meters of
wavelength); ssa:Char.SpectralAxis.Coverage.Location.Value

Late parameter specstart defaults to None; lower bound of wavelength inter-
val (in meters); ssa:Char.SpectralAxis.Coverage.Bounds.Start

Late parameter targclass defaults to None; object class (star, QSO,...);
ssa:Target.Class

Late parameter targname defaults to None; common name of the object ob-
served; ssa:Target.Name

Late parameter timeExt defaults to None; exposure time (in seconds);
ssa:Char.TimeAxis.Coverage.Bounds.Extent

//ssap#setMixcMeta

Sets metadata for an SSA data set from mixed sources. This will only work
sensibly in cooperation with setMeta

As with setMeta, the values are left in vars; if you did as recommended with
setMeta, you’ll have this covered as well.

Setup parameters for the procedure are:

186

Late parameter binSize defaults to None; Bin size on the spectral axis in m

Late parameter collection defaults to None; IOVA id of the originating data
collection (leave empty if you don’t know what this is about)

Late parameter creationType defaults to None; Process used to produce
the data (zero or more of archival, cutout, filtered, mosaic, projec-
tion, spectralExtraction, catalogExtraction, concatenated by commas);
ssa:DataID.CreationType

Late parameter creator defaults to "Take from RD"; Creator/Author

Late parameter dataSource defaults to None; Generation type (typically, one
survey, pointed, theory, custom, artificial); ssa:DataID.DataSource

Late parameter dstype defaults to "Spectrum"; Type of data. The only de-
fined value currently is Spectrum, but you may get away with TimeSeries;
ssa:Dataset.Type

Late parameter fluxCalib defaults to None; Type of flux calibration (one
of ABSOLUTE, RELATIVE, NORMALIZED, or UNCALIBRATED);
ssa:Char.FluxAxis.Calibration

Late parameter fluxStatError defaults to None; Statistical error for flux in
units of fluxUnit

Late parameter fluxSysError defaults to None; Systematic error for flux in
units of fluxUnit

Late parameter instrument defaults to "Take from RD"; Instrument or code
used to produce this dataset; ssa:DataID.Instrument

Late parameter publisher defaults to "Take from RD"; Publisher IVO;
ssa:Curation.Publisher

Late parameter reference defaults to "Take from RD"; URL or bibcode of a
publication describing this data.

Late parameter specCalib defaults to None; Type of wavelength Calibration
(one of ABSOLUTE, RELATIVE, NORMALIZED, or UNCALIBRATED);
ssa:Char.SpectralAxis.Calibration

Late parameter specres defaults to None; Resolution on the spectral axis; you
must give this as FWHM wavelength in meters here. Approximate as
necessary; ssa:Char.SpectralAxis.Resolution

Late parameter spectStatError defaults to None; Statistical error for the
spectral coordinate in m

Late parameter spectSysError defaults to None; Systematic error for the
spectral coordinate in m

187

Procedures available for grammar rowfilters

//procs#expandComma

A row generator that reads comma seperated values from a field and returns
one row with a new field for each of them.

Setup parameters for the procedure are:

Parameter destField Name of the column the individual columns are written
to

Parameter srcField Name of the column containing the full string

//procs#expandDates

is a row generator to expand time ranges.

The finished dates are left in destination as datetime.datetime instances

Setup parameters for the procedure are:

Parameter dest defaults to ’curTime’; name of the column the time should
appear in

Parameter end the end date(time)

Late parameter hrInterval defaults to 24; difference between generated
timestamps in hours

Parameter start the start date(time), as either a datetime object or a column
ref

//procs#expandIntegers

A row processor that produces copies of rows based on integer indices.

The idea is that sometimes rows have specifications like "Star 10 through Star
100". These are a pain if untreated. A RowExpander could create 90 individual
rows from this.

Setup parameters for the procedure are:

Parameter endName column containing the end value

Parameter indName name the counter should appear under

Parameter startName column containing the start value

188

//products#define

Enters the values defined by the product interface into a grammar’s result.

See the documentation on the //products#table mixin. In short: you will always
have to touch table (to the name of the table this row is managed in).

Everything else is optional: You may want to set preview and preview_mime if
DaCHS can’t do previews of your stuff automatically. datalink is there if you
have a datalink thing. What’s left is for special situations.

This will create the keys prodblAccref, prodtblOwner, prodtblEmbargo, prodt-
blPath, prodtblFsize, prodtblTable, prodtblMime, prodtblPreview, prodt-
bleMime, and prodtblDatalink keys in rawdict -- you can refer to them in the
usual @foo way, which is sometimes useful even outside products processing
proper (in particular for prodtblAccref).

Setup parameters for the procedure are:

Late parameter accref defaults to \inputRelativePath{False}; an access ref-
erence (this ususally is the input-relative path; only file names well-
behaved in URLs are accepted here by default for easier operation with
ObsTAP)

Late parameter datalink defaults to None; id of a datalink service that under-
stands this file’s pubDID.

Late parameter embargo defaults to None; for proprietary data, the date the
file will become public

Late parameter fsize defaults to \inputSize; the size of the input

Late parameter mime defaults to ’image/fits’; MIME-type for the product

Late parameter owner defaults to None; for proprietary data, the owner as a
gavo creds-created user

Late parameter path defaults to \inputRelativePath{True}; the inputs-relative
path to the product file (change at your peril)

Late parameter preview defaults to ’AUTO’; file path to a preview,
dcc://rd.id/svcid id of a preview-enabled datalink service, None to disable
previews, or ’AUTO’ to make DaCHS guess.

Late parameter preview_mime defaults to None; MIME-type for the preview
(if there is one).

Parameter table the table this product is managed in. You must fill this in,
and don’t forget the quotes.

189

Procedures available for datalink cores

//datalink#fits_doWCSCutout

A fairly generic FITS cutout function.

It expects some special attributes in the descriptor to allow it to decode the
arguments. These must be left behind by the metaMaker(s) creating the pa-
rameters.

This is axisNames, a dictionary mapping parameter names to the FITS axis
numbers or the special names WCSLAT or WCSLONG. It also expects a skyWCS
attribute, a pywcs.WCS instance for spatial cutouts.

Finally, descriptor must have a list attribute slices, containing zero or more
tuples of (fits axis, lowerPixel, upperPixel); this allows things like LAMBDA to
add their slices obtained from parameters in standard units.

The .data attribute must be a pyfits hduList, as generated by the
fits_makeHDUList data function.

//datalink#fits_formatHDUs

Formats pyfits HDUs into a FITS file.

This all works in memory, so for large FITS files you’d want something more
streamlined.

//datalink#fits_genDesc

A data function for datalink returning the a fits descriptor.

This has, in addition to the standard stuff, a hdr attribute containing the primary
header as pyfits structure.

The functionality of this is in its setup, getFITSDescriptor. The intention is
that customized DGs (e.g., fixing the header) can use this as an original.

Setup parameters for the procedure are:

Parameter accrefStart defaults to None; A start of accrefs the parent datalink
service works of. Procedures on all other accrefs will be rejected with a
403 forbidden. You should always include a restriction like this when you
make assumptions about the FITSes (e.g., what axes are available).

190

//datalink#fits_makeHDUList

An initial data function to construct a pyfits hduList and make that into a
descriptor’s data attribute.

This wants a descriptor as returned by fits_genDesc.

There’s a hack here: this sets a dataIsPristine boolean on descriptor that’s
made false when one of the fits manipulators change something. If that’s true
by the time the formatter sees it, it will just push out the entire file. So, if you
use this and insert your own data functions, make sure you set dataIsPristine
accordingly.

Setup parameters for the procedure are:

Parameter crop defaults to True; Cut away everything but the primary HDU?

//datalink#fits_makeLambdaMeta

Yields standard lambda params.

This adds lambdaToMeterFactor and lambdaAxis attributes to the descriptor
for later use by

Setup parameters for the procedure are:

Parameter fitsAxis defaults to 3; FITS axis index (1-based) of the wavelength
dimension

Parameter wavelengthUnit defaults to None; Override for the FITS unit given
for the wavelength (for when it is botched or missing; leave at None for
taking it from the header)

//datalink#fits_makeLambdaSlice

Computes a cutout for the parameters added by makeLambdaMeta.

This must sit in front of doWCSCutout.

This also reuses internal state added by makeLambdaMeta, so this really only
makes sense together with it.

191

//datalink#fits_makeWCSParams

A metaMaker that generates parameters allowing cutouts along the various WCS
axes in physical coordinates.

This uses pywcs for the spatial coordinates and tries to figure out what these are
with some heuristics. For the remaining coordinates, it assumes all are basically
1D, and it sets up separate, manual transformations for them.

The metaMaker leaves an axisNames mapping in the descriptor. This is im-
portant for the fits_doWCSCutout, and replacement metaMakers must do the
same.

The meta maker also creates a skyWCS attribute in the descriptor if successful,
containing the spatial transformation only. All other transformations, if present,
are in miscWCS, by a dict mapping axis labels to the fitstools.WCS1Trans
instances.

If individual metadata in the header are wrong or to give better metadata, use
axisMetaOverrides. This will not generate standard parameters for non-spatial
axis (LAMBDA and friends). There are other datalink streams for those.

Setup parameters for the procedure are:

Parameter axisMetaOverrides defaults to {}; A python dictionary mapping
fits axis indices (1-based) to dictionaries of inputKey constructor argu-
ments; for spatial axis, use the axis name instead of the axis index.

Parameter stcs defaults to None; A QSTC expression describing the STC struc-
ture of the parameters. If you don’t give this, no STC structure will be
declared.

//datalink#fromStandardPubDID

A descriptor generator for datalink that builds a ProductDescriptor for PubDIDs
that have been built by getStandardsPubDID (i.e., the path part of the IVORN
is a tilda, with the products table accref as the query part).

//datalink#generateProduct

A data function for datalink that returns a product instance. You can restrict
the mime type of the product requested so the following filters have a good idea
what to expect.

Setup parameters for the procedure are:

192

Parameter requireMimes defaults to frozenset(); A set or sequence of mime
type strings; when given, the data generator will bail out with Validation-
Error if the product mime is not among the mimes given.

//datalink#sdm_genData

A data function for datalink returning a spectral data model compliant table
that later data functions can then work on. As usual for generators, it uses the
implicit PUBDID argument.

Setup parameters for the procedure are:

Parameter builder Full reference (like path/rdname#id) to a data element
building the SDM instance table as its primary table.

//datalink#sdm_genDesc

A data function for datalink returning the product row corresponding to a Pub-
DID within an SSA table.

The descriptors generated have an ssaRow attribute containing the original row
in the SSA table.

Setup parameters for the procedure are:

Parameter ssaTD Full reference (like path/rdname#id) to the SSA table the
spectrum’s PubDID can be found in.

//datalink#trivialFormatter

The tivial formatter for datalink processed data -- it just returns descriptor.data,
which will only work it it works as a nevow resource.

If you do not give any dataFormatter yourself in a datalink core, this is what
will be used.

Predefined Streams
Streams are recorded RD elements that can be replayed into resource descriptors
using the FEED active tag. They do, however, support macro expansion; if
macros are expanded, you need to given them values in the FEED element (as
attributes). What attributes are required should be mentioned in the following
descriptions for those predefined streams within DaCHS that are intended for
developer consumption.

193

Datalink-related Streams

//datalink#sdm_plainfluxcalib

A stream inserting a data function and its metadata generator to do select
flux calibrations in SDM data. This expects sdm_generate (or at least pa-
rameters.data as an SDM data instance) as the generating function within the
datalink core.

Clients can select "RELATIVE" as FLUXCALIB, which does a normalization to
max(flux)=1 here. Everything else is rejected right now.

This probably is more an example of how to write such a thing then genuinely
useful.

//datalink#sdm_cutout

A stream inserting a data function and its metaMaker to do cutouts in SDM
data. This expects sdm_generate (or at least parameters.data as an SDM data
instance) as the generating function within the datalink core.

The cutout limits are always given in meters, regardless of the spectrum’s actual
units (as in SSAP’s BAND parameter).

//datalink#sdm_format

A formatter for SDM data, together with its input key for FORMAT.

//datalink#fits_genKindPar

This stream should be included in FITS-handling datalink services; it adds pa-
rameter and code to just retrieve the FITS header to the core.

For this to work as expected, it must be immediately before the formatter.

//datalink#fits_genPixelPar

This stream should be included in FITS-handling datalink services; it add pa-
rameters and code to perform cut-outs along pixel coordinates.

194

//datalink#fits_standardDLFuncs

Pulls in all "standard" datalink functions for FITSes, including cutouts and
header retrieval.

You must give both an stcs attribute (for fits_makeWCSParams) and an ac-
crefStart attribute (for fits_genDesc). Both can be empty, however (but if you
think you should be leaving them empty you should probably think again).

Do not add quotes to them, even though the proc parameters have them; the
STREAM already puts in single quotes.

//datalink#fits_standardLambdaCutout

Adds metadata and processor for one axis containing wavelengths.

(this could be extended to cover frequency and energy axis, I guess)

To use this, give the fits axis containing the spectral coordinate in the spec-
tralAxis attribute; if needed, you can override the unit in wavelengthUnit (if the
unit in the header is somehow bad or missing).

Other Streams

//obscore#obscore-columns

The columns of a (standard) obscore table. This can be used to define a "native"
obscore table (as opposed to the more usual mixins below that expose standard
products via obscore.

Even if you are sure you want to do this, better ask again...

//ssap#hcd_condDescs

The full condDescs for matching HCD SSA services.

//ssap#atomicCoords

A stream for form-based service’s VOTables to include simple RA and Dec rather
than normal ssa_location.

SSA services get that from the core and don’t need this.

//echelle#ssacols

Additional columns for SSA metadata tables describing Echelle spectra.

195

//scs#coreDescs

This stream inserts three condDescs for SCS services on tables with
pos.eq.(ra|dec).main columns; one producing the standard SCS RA, DEC, and
SR parameters, another creating input fields for human consumption, and finally
MAXREC.

Metadata
Various elements support the setting of metadata through meta elements. Meta-
data is used for conveying RMI-style metadata used in the VO registry. See
[RMI] for an overview of those. We use the keys given in RMI, but there are
some extensions discussed in RMI-style Metadata.

The other big use of meta information is for feeding templates. Those "local"
keys should all start with an underscore. You are basically free to use those as
you like and fetch them from your custom templates. The predefined templates
already have some meta items built in, discussed in Template Metadata.

So, metadata is a key-value mapping. Keys may be compound like in RMI, i.e.,
they may consist of period-separated atoms, like publisher.address.email. There
may be multiple items for each meta key.

Meta inheritance

When you query an element for metadata, it first sees if it has this metadata. If
that is not the case, it will ask its meta parent. This usually is the embedding
element. It wil again delegate the request to its parent, if it exists. If there
is no parent, configured defaults are examined. These are taken from root-
Dir/etc/defaultmeta, where they are given as colon-separated key-value pairs,
e.g.,

publisher: The GAVO DC team
publisherID: ivo://org.gavo.dc
contact.name: GAVO Data Center Team
contact.address: Moenchhofstrasse 12-14, D-69120 Heidelberg
contact.email: gavo@ari.uni-heidelberg.de
contact.telephone: ++49 6221 54 1837
creator.name: GAVO Data Center

creator.logo: http://vo.ari.uni-heidelberg.de/docs/GavoTiny.png

The effect is that you can give global titles, descriptions, etc. in the RD but
override them in services, tables, etc. The configured defaults let you specify
meta items that are probably constant for everything in your data center, though
of course you can override these in your RD elements, too.

196

In HTML templates, missing meta usually is not an error. The corresponding
elements are just left empty. In registry documents, missing meta may be an
error.

Meta formats

Metadata must work in registry records as well as in HTML pages and possibly
in other places. Thus, it should ideally be given in formats that can be sensibly
transformed into the various formats.

The GAVO DC software knows four input formats:

literal The textual content of the element will not be touched. In HTML, it
will end up in a div block of class literalmeta.

plain The textual content of the element will be whitespace-normalized, i.e.,
whitespace will be stripped from the start and the end, runs of blanks
and tabs are replaced by a single blank, and empty lines translate into
paragraphs. In HTML, these blocks com in plainmeta div elements.

rst The textual content of the element is interpreted as ReStructuredText.
When requested as plain text, the ReStructuredText itself is returned,
in HTML, the standard docutils rendering is returned.

raw The textual content of the element is not touched. It will be embedded into
HTML directly. You can use this, probably together with CDATA sections,
to embed HTML -- the other formats should not contain anything special
to HTML (i.e., they should be PCDATA in XML lingo). While the software
does not enforce this, raw content should not be used with RMI-type
metadata. Only use it for items that will not be rendered outside of
HTML templates.

Macros in Meta Elements

Macros will be expanded in meta items using the embedding element as macro
processors (i.e., you can use the macros defined by this element).

Typed Meta Elements

While generally the DC software does not care what you put into meta items
and views them all as strings, certain keys are treated specially. The following
meta keys trigger some special behaviour:

197

_example A MetaValue to keep VOSI examples in.
All of these must have a title, which is also used to generate references.
These also are in reStructuredText by default, and changing that probably
makes no sense at all, as these will always need interpreted text roles for
proper markup.
Thus, the usual pattern here is:

<meta name="_example" title="An example for _example">
See docs_

.. _docs: http://docs.g-vo.org

</meta>

_news A meta value representing a "news" items.
The content is the body of the news. In addition, they have date, author,
and role children. In plain text, you would write:

_news: Frobnicated the quux.
_news.author: MD
_news.date: 2009-03-06

_news.role: updated

In XML, you would usually write:

<meta name="_news" author="MD" date="2009-03-06">
Frobnicated the quux.

</meta>

_news items become serialised into Registry records despite their leading
underscores. role then becomes the date’s role.

_related A meta value containing a link and optionally a title
In plain text, this would look like this:

_related:http://foo.bar

_related.title: The foo page

In XML, you can write:

<meta name="_related" title="The foo page"

ivoId="ivo://bar.org/foo">http://foo.bar</meta>

or, if you prefer:

<meta name="_related">http://foo.bar

<meta name="title">The foo page</meta></meta>

198

These values are used for _related (meaning "visible" links to other ser-
vices).
For links within you data center, use the internallink macro, the argument
of which the the "path" to a resource, i.e. RD path/service/renderer; we
recommend to use the info renderer in such links as a rule. This would
look like this:

<meta name="_related" title="Aspec SSAP"

>\internallink{aspec/q/ssa/info}</meta>

creator.logo A MetaValue corresponding to a small image.
These are rendered as little images in HTML. In XML meta, you can say:

<meta name="_somelogo" type="logo">http://foo.bar/quux.png</meta>

derivedFrom A meta value containing an ivo-id and a name of a related re-
source.
These are intended for serviceFor, servedBy, derivedFrom, mirrorOf, and
relatedTo metas. Plus, new and non-standard for DocRegExt, uses.
It should look like this:

servedBy: GAVO TAP service

servedBy.ivoId: ivo://org.gavo.dc

However, service attribute of data publications automatically sets these
metas, so typically you won’t have to bother with those.

info A meta value for info items in VOTables.
In addition to the content (which should be rendered as the info element’s
text content), it contains an infoName and an infoValue.
They are only used internally in VOTable generation and might go away
without notice.

logo A MetaValue corresponding to a small image.
These are rendered as little images in HTML. In XML meta, you can say:

<meta name="_somelogo" type="logo">http://foo.bar/quux.png</meta>

mirrorOf A meta value containing an ivo-id and a name of a related resource.
These are intended for serviceFor, servedBy, derivedFrom, mirrorOf, and
relatedTo metas. Plus, new and non-standard for DocRegExt, uses.
It should look like this:

servedBy: GAVO TAP service

servedBy.ivoId: ivo://org.gavo.dc

199

However, service attribute of data publications automatically sets these
metas, so typically you won’t have to bother with those.

note A meta value representing a "note" item.
This is like a footnote, typically on tables, and is rendered in table infos.
The content is the note body. In addition, you want a tag child that gives
whatever the note is references as. We recommend numbers.
Contrary to other meta items, note content defaults to rstx format.
Typically, this works with a column’s note attribute.
In XML, you would usually write:

<meta name="note" tag="1">
Better ignore this.

</meta>

referenceURL A meta value containing a link and optionally a title
In plain text, this would look like this:

_related:http://foo.bar

_related.title: The foo page

In XML, you can write:

<meta name="_related" title="The foo page"

ivoId="ivo://bar.org/foo">http://foo.bar</meta>

or, if you prefer:

<meta name="_related">http://foo.bar

<meta name="title">The foo page</meta></meta>

These values are used for _related (meaning "visible" links to other ser-
vices).
For links within you data center, use the internallink macro, the argument
of which the the "path" to a resource, i.e. RD path/service/renderer; we
recommend to use the info renderer in such links as a rule. This would
look like this:

<meta name="_related" title="Aspec SSAP"

>\internallink{aspec/q/ssa/info}</meta>

relatedTo A meta value containing an ivo-id and a name of a related resource.
These are intended for serviceFor, servedBy, derivedFrom, mirrorOf, and
relatedTo metas. Plus, new and non-standard for DocRegExt, uses.
It should look like this:

200

servedBy: GAVO TAP service

servedBy.ivoId: ivo://org.gavo.dc

However, service attribute of data publications automatically sets these
metas, so typically you won’t have to bother with those.

servedBy A meta value containing an ivo-id and a name of a related resource.
These are intended for serviceFor, servedBy, derivedFrom, mirrorOf, and
relatedTo metas. Plus, new and non-standard for DocRegExt, uses.
It should look like this:

servedBy: GAVO TAP service

servedBy.ivoId: ivo://org.gavo.dc

However, service attribute of data publications automatically sets these
metas, so typically you won’t have to bother with those.

serviceFor A meta value containing an ivo-id and a name of a related resource.
These are intended for serviceFor, servedBy, derivedFrom, mirrorOf, and
relatedTo metas. Plus, new and non-standard for DocRegExt, uses.
It should look like this:

servedBy: GAVO TAP service

servedBy.ivoId: ivo://org.gavo.dc

However, service attribute of data publications automatically sets these
metas, so typically you won’t have to bother with those.

source A MetaValue that may contain bibcodes, which are rendered as links
into ADS.

uses A meta value containing an ivo-id and a name of a related resource.
These are intended for serviceFor, servedBy, derivedFrom, mirrorOf, and
relatedTo metas. Plus, new and non-standard for DocRegExt, uses.
It should look like this:

servedBy: GAVO TAP service

servedBy.ivoId: ivo://org.gavo.dc

However, service attribute of data publications automatically sets these
metas, so typically you won’t have to bother with those.

votlink A MetaValue serialized into VOTable links (or, ideally, analoguous con-
structs).
This exposes the various attributes of VOTable LINKs as href linkname,
contentType, and role. You cannot set ID here; if this ever needs refer-
encing, we’ll need to think about it again. The href attribute is simply

201

the content of our meta (since there’s no link without href), and there’s
never any content in VOTable LINKs).
You could thus say:

votlink: http://docs.g-vo.org/DaCHS
votlink.role: doc
votlink.contentType: text/html

votlink.linkname: GAVO DaCHS documentation

Additionally, there is creator, which is really special (at least for now). When
you set creator to a string, the string will be split at semicolons, and for each
substring a creator item with the respective name is generated. This may sound
complicated but really does about what your would expect when you write:

<meta name="creator">Last, J; First, B; Middle, I.</meta>

Metadata in Standard Renderers

Certain meta keys have a data center-internal interpretation, used in renderers
or writers of certain formats. These keys should always start with an underscore.
Among those are:

∙ _intro -- used by the standard HTML template for explanatory text above
the seach form.

∙ _bottominfo -- used by the standard HTML template for explanatory text
below the seach form.

∙ _copyright -- used by the standard HTML template for copyright-related
information (there’s also copyright in RMI; the one with the underscore
is intended to be less formal).

∙ _related -- used in the standard HTML template for links to related ser-
vices. As listed above, this is a link, i.e., you can give a title attribute.

∙ _longdoc -- used by the service info renderer for an explanatory piece of
text of arbitrary length. This will usually be in ReStructuredText, and we
recommend having the whole meta body in a CDATA section.

∙ _news -- news on the service. See above at Typed Meta Elements.

∙ _warning -- used by both the VOTable and the HTML table renderer.
The content is rendered as some kind of warning. Unfortunately, there is
no standard how to do this in VOTables. There is no telling if the info
elements generated will show anywhere.

202

∙ _noresultwarning -- displayed by the default response template instead of
an empty table (use it for things like "No Foobar data for your query")

∙ _type -- on Data instances, used by the VOTable writer to set the type

attribute on RESOURCE elements (to either "results" or "meta"). Probably
only useful internally.

∙ _plotOptions – typically set on services, this lets you configure the ini-
tial appearance of the javascript-based quick plot. The value must be
a javascript dictionary literal (like {"xselIndex": 2}) unless you’re try-
ing CSS deviltry (which you could, using this meta; then again, if you
can inject RDs, you probably don’t need CSS attacks). Keys evaluated
include:

– xselIndex – 0-based index of the column plotted on the x-axis (de-
fault: 0)

– yselIndex – 0-based index of the column plotted on the y-axis (de-
fault: length of the column list; that’s "histogram on y)

– usingIndex – 0-based index of the plotting style selector. For now,
that’s 0 for points and 1 for lines.

RMI-Style Metadata

For services (and other things) that are registred in the Registry, you must
give certain metadata items (and you can give more), where we take their
keys from [RMI]. We provide a explanatory leaflet for data providers. The most
common keys -- used by the registry interface and in part by HTML and VOTable
renderers -- include:

∙ title -- this should in general be given seperately on the resource, each
table, and each service. In simple cases, though, you may get by by just
having one global title on the resource and rely on metdata inheritance.

∙ shortName -- a string that should indicate what the service is in 16 char-
acters or less.

∙ creationDate -- Use ISO format with time, UTC only, like this: 2007-10-
04T12:00:00Z

∙ subject -- as noted in the explanatory leaflet, these should be taken from
the IVOA Vocabulary Explorer.

∙ copyright -- freetext copyright notice.

∙ source -- bibcodes will be expanded to ADS links here.

203

http://explicator.dcs.gla.ac.uk/WebVocabularyExplorer/

∙ referenceURL -- again, a link, so you can give a title for presentation
purposes. If you give no referenceURL, the service’s info page will be
used.

∙ dateUpdated -- an ISO date. Do not set this. This is determined from
timestamps in DaCHS’s state directory. There is also datetimeUpdated
that you would have to keep in sync with dateUpdated if you were to
change it.

∙ creator.name -- this should be the name of the "author" of the data set.
See below for multiple creators. If you set this, you may want to override
creator.logo as well.

∙ type – one of Other, Archive, Bibliography, Catalog, Journal, Library,
Simulation, Survey, Transformation, Education, Outreach, EPOResource,
Animation, Artwork, Background, BasicData, Historical, Photographic,
Press, Organisation, Project, Registry – it’s optional and we doubt its
usefulness.

∙ facility -- no IVOA ids are supported here yet, but probably this should
change.

∙ coverage -- see the special section

∙ service-specific metadata (for SIA, SCS, etc.) -- see the documentation
of the respective cores.

∙ utype – tables (and possibly other items) can have utypes to signify their
role in specific data models. For tables, this utype gets exported to the
tap_schema.

∙ identifier – this is the IVORN of the resource, usually generated by DaCHS.
Do not override this unless you know what you are doing (which at least
means you know how to make DaCHS declare an authority and claim it).
If you do override the identifier of a service that’s already published, make
sure you run gavo admin makeDeletedRecord <previous identifier> (before
or after the gavo pub on the resource, or the registries will have two copies
of your record, one of which will not be updated any more; and that would
suck for Registry users.

While you can set any of these in etc/defaultmeta.txt, the following items are
usually set there:

∙ publisher

∙ publisherID

204

∙ contact.name

∙ contact.address

∙ contact.email

∙ contact.telephone

The creator.name meta illustrates a pitfall with our metadata definition. Sup-
pose you had more than one creator. What you’d want is a metadata structure
like this:

+-- creator -- name (Arthur)
|

+-- creator -- name (Berta)

However, if you write:

creator.name: Arthur

creator.name: Berta

or, equivalently:

<meta name="creator.name">Arthur</meta>

<meta name="creator.name">Berta</meta>

by the above rules, you’ll get this:

+-- creator -- name (Arthur)
|

+------ name (Berta)

i.e., one creator with two names.

To avoid this, make a new creator node in between, i.e., write:

creator.name: Arthur
creator:

creator.name: Berta

In DaCHS resources, it’s better to be explicit about the tree structure (though
you could write it like in metastream):

205

<meta name="creator">
<meta name="name">Arthur</meta>

</meta>
<meta name="creator">
<meta name="name">Berta</meta>

</meta>

However, for creator.name specifically, it’s highly likely that people accept things
like "Arthur; Berta" anyway, and so here it might be better to disregard the tree
structure issues entirely.

Actually, the DaCHS internal author table as used by the alternative portal
interprets one special notation:

<author1>, <inits1> {; <authorn>, <initsn>}

That is, you should write authors lists like "Foo, X.; Bar, Q.; et al".

Coverage Metadata

Coverage metadata probably is the most complex piece of metadata, but also
potentially the most useful, since it would allow clients to restrict querying to
services known to contain relevant material. So, try to get it right.

Within DaCHS, coverage metadata uses the following keys:

∙ coverage.profile – an STC-S string giving the coverage of the service.
These can become rather complex. We implement several extensions to
STC-S. See also the documentation for GAVO STC

∙ coverage.waveband – One of Radio, Millimeter, Infrared, Optical, UV,
EUV, X-ray, Gamma-ray, and you can have multiple waveband specifica-
tions. Note that you can provide much more detailed information on the
covered spectral range as part of coverage.profile (but it’s also much less
likely that there is proper support for data there in registries and clients).

∙ coverage.regionOfRegard – in essence, the "pixel size" of the service in
degrees. If, for example, your service gives data on a lattice of sampling
points, the typical distance of such points should be given here. Leave
out if this doesn’t apply to your service.

∙ coverage.footprint – reserved; this will probably be filled in automatically
by the software once we have a footprint standard and DaCHS implements
it.

206

http://docs.g-vo.org/DaCHS/stc.html

Here’s an example for a service covering the large and small magellanic clouds:

<meta name="coverage">
<meta name="profile">

Union ICRS (
Box 81 69.75 14 3.25
Box 13 -73 9 2)</meta>

<meta name="waveband">Optical</meta>
<meta name="waveband">Infrared</meta>
<meta name="regionOfRegard">0.02</meta>

</meta>

Meta Stream Format

In serveral places, most notably in the defaultmeta.txt file and in meta elements
without a name attribute, you can give metadata as a "meta stream". This is
just a sequence of lines containing pairs of <meta key> and <meta value>.

In addition, there are comments, empty lines, and continuations. Continuation
lines work by ending a line with a backslash. The following line separator and
all blanks and tabs following it are then ignored. Thus, the following two meta
keys end up having identical values:

meta1: A contin\
uation line needs \

a blank if you wan\
t one.

meta2: A continuation line needs a blank if you want one

Note that whitespace behind a backslash prevents it from being a continuation
character. That is, admittedly, a bit of a trap.

Other than their use as continuation characters, backslashes have no special
meaning within meta streams as such. Within meta elements, however, macros
are expanded after continuation line processing if the meta parent knows how
to expand macros. This lets you write things like:

<meta>
creationDate: \metaString{authority.creationDate}
managingOrg:ivo://\getConfig{ivoa}{authority}

</meta>

Comments and empty lines are easy: Empty lines are allowed, and a comment
is a line with a hash (#) as its first non-whitespace character. Both constructs
are ignored, and you can even continue comments (though you should not).

207

Meta information can have a complex tree structure. With meta streams, you
can build trees by referencing dotted meta identifiers. If you specify meta
information for an item that already exists, a sibling will be created. Thus,
after:

creator.name: A. Author
creator:

creator.name: B. Buthor

there are two creator elements, each specifying a name meta. For the way
creators are specified within VOResource, the following would be wrong:

creator.name: This is wrong.

creator.name: and will not work

-- you would have a single creator meta with two name metas, which is not
allowed by VOResource.

If you write:

contact.address: 7 Miner’s Way, Behind the Seven Mountains

contact.email: dwarfs@fairytale.fa

you have a single contact meta giving address and email.

Display Hints
Display hints use an open vocabulary. As you add value formatters, you can
evaluate any display hint you like. Display hints understood by the built-in value
formatters include:

checkmark in HTML tables, render this column as empty or checkmark de-
pending on whether the value is false or true to python.

displayUnit use the value of this hint as the unit to display a value in.

nopreview if this key is present with any value, no HTML code to generate
previews when mousing over a link will be generated.

sepChar a separation character for sexagesimal displays and the like.

sf "Significant figures" -- length of the mantissa for this column. Will probably
be replaced by a column attribute analoguous to what VOTable does.

208

type a key that gives hints what to do with the column. Values currently
understood include:

bar display a numeric value as a bar of length value pixels.
bibcode display the value as a link to an ADS bibcode query.
humanDate display a timestamp value or a real number in either yr

(julian year), d (JD, or MJD if xtype is mjd), or s (unix timestamp)
as an ISO string.

humanDay display a timestamp or date value as an ISO string without
time.

humanTime display values as h:m:s.
keephtml lets you include raw HTML. In VOTables, tags are removed.
product treats the value as a product key and expands it to a URL for the

product (i.e., typically image). This is defined in protocols.products.
This display hint is also used by, e.g., the tar format to identify which
columns should contribute to the tar file.

dms format a float as degree, minutes, seconds.
simbadlink formats a column consisting of alpha and delta as a link to

query simbad. You can add a coneMins displayHint to specify the
search radius.

suppress do not automatically include this column in any table (e.g.,
verbLevel-based column selection).

hms force formatting of this column as a time (usually for RA).
url makes value a link in HTML tables. The anchor text will be the last

element of the path part of the URL, or, if given, the value of the
anchorText property of the column (which is for cases when you
want a constant text like "Details"). If you need more control over
the anchor text, use an outputField with a formatter.

imageURL makes value the src of an image. Add width to force a certain
image size.

noxml if ’true’ (exactly like this), do not include this column in VOTables.

Note that not any combination of display hints is correctly interpreted. The
interpretation is greedy, and only one formatter at a time attempts to interpret
display hints.

Building Service Interfaces
Within DaCHS, an HTTP request is processed as follows:

209

1) The core is adapted to the renderer; this means that condDescs with
buildFrom are converted to inputKeys according to the rules of the
renderer. The form renderer generates VizieR-like expressions, pro-
tocol renderers make PQL parameters, etc. Also, onlyForRenderer
and notForRenderer inputKeys are selected or deselected

2) From the core’s inputTable, the service builds an input data descrip-
tor (unless the service has an inputDD defined already, of course).
Most standard cores only take input from an input table’s parame-
ters (the exception being the computedCore), and hence the auto-
matic inputDD will only have a parmaker. The automatic inputDD
will parse using ContextGrammar without a rowKey (i.e., no rows
will be produced). The parmaker within the automatic inputDD
parses the input with the default parsers and using the getHTTP-
Par rowmaker function.

3) The service will build the input table using its inputDD. The input
must be like nevow request.args, mapping each key to a sequence
of strings.

4) The input table is passed to the core, which produces either a table,
a data instance, or a pair of mime-type and content.

5) From the core result, an SvcResult is built. This is relevant when
the service has an outputTable defined, in which case the table
structure is adapted if the input actually is a table.

6) The renderer formats the SvcResult according to its wishes.

There is special handling for the form renderer, which does its parsing using
nevow formal. For it, the input table is built by just putting the values of the
dictionary nevow formal produces into the input table params.

TBD: multiplicity, param values as defaults,

Table-based cores

You will usually deal with cores querying database tables – dbCore, ssapCore,
etc. For these, there should not be a need to define an inputDD; the one
generated from the condDescs should work fine.

To create simple constraints, just buildFrom the columns queried:

<condDesc buildFrom="myColumn"/>

210

(the names are resolved in the core’s queried table). This pattern has the advan-
tage that the concrete parameter style is adapted to the renderer – in the web
interface, there are vizier-like expressions, in protocol interfaces, you get fields
understanding expressions as in SSAP’s "PQL", plus in addition "structured
parameters" (like FOO_MIN and FOO_MAX) where applicable.

This will generate query fields that work against data as stored in the database,
with some exceptions (columns containing MJDs will, for example, be turned
into VizieR-like date expressions for web forms). For protocol input, this is,
in general, what you want. In web forms, you may want to customize the
apprearance, for example, to adapt to user’s unit preferences. For this latter
use case, there is the inputUnit attribute:

<condDesc>
<inputKey original="minDist" inputUnit="arcsec"

type="vexpr-float">
<property key="onlyForRenderer">form</property>

</inputKey>
<inputKey original="minDist"

type="pql-float">
<property key="notForRenderer">form</property>

</inputKey>

</condDesc>

Note how in this case we adapted the types of the input keys to provide interfaces
suitable to the various renderers. For HTML forms, we recommend one of

∙ vexpr-float

∙ vexpr-date (dates with timestamps in the database)

∙ vexpr-mjd (dates with MJD in the database)

∙ vexpr-string (though for those, frequently generating options is preferable,
see below)

For protocol input, the types available are

∙ pql-int

∙ pql-float

∙ pql-string

∙ pql-date (where timestamps are in the database; MHD works fine with
pql-float since date input is not really desirable for protocol input anyway).

211

Note that you can, of course, also keep the default types where that provides
a better interface. Flag-like integers, for example, are classic examples where
giving the possible values is preferable to allowing parameter expressions.

For object lists and similar, it is frequently desirable to give the possible values
(unless there are too many of those; these will be translated to option lists in
forms and to metadata items for protocol services and hence be user visible):

<condDesc>
<inputKey original="source">

<values fromdb="source from plc.data"/>
</inputKey>

</condDesc>

All these generate the default SQL, which is equality (or set membership for
multiple values for a parameter). To generate custom SQL, give a phraseMaker,
like this:

<condDesc>
<inputKey original="confirmed" multiplicity="single"/>
<phraseMaker>

<code>
if inPars.get(inputKeys[0].name, False):

yield "confirmed"
</code>

</phraseMaker>

</condDesc>

PhraseMakers work like other code embedded in RDs (and thus may have setup).
inPars gives a dictionary of the input parameters as parsed by the inputDD
according to multiplicity (or as delivered by nevow formal – use the getHTTPPar

rowmaker function if there can be input with differing multiplicities). inputKeys

contains a sequence of the condDesc’s inputKeys. By using their names as
above, your code will not break if the parameters are renamed.

PhraseMakers must yield zero or more SQL fragments; multiple SQL fragments
are joined in conjunctions (i.e., end up in ANDed conditions in the WHERE
clause).

Since you are dealing with raw SQL here, never include material from inPars
directly in the query strings you return – this would immediately let people
to SQL injections at least when the inputKey’s type is string. Instead, use
getSQLKey as in this example:

<condDesc>
<inputKey original="hdwl" multiplicity="single"/>

212

<phraseMaker>
<code>

ik = inputKeys[0]
destRE = "^%s\\.[0-9]*$"%inPars[ik.name]
yield "%s ~ (%%(%s)s)"%(ik.name,

base.getSQLKey("destRE", destRE, outPars))
</code>

</phraseMaker>

</condDesc>

getSQLKey takes a suggested name, a value and a dictionary, which within phrase-
Makers always is outPars. It will enter value with the suggested name as key into
outPars or change the suggested name if there is a name clash. The generated
name will be returned, and that is what is entered in the SQL statement.

The outPars dictionary is shared between all condDescs entering into a query.
Hence, if you do anything with it except passing it to base.getSQLKey, you’re
voiding your entire warranty.

Here’s how to define a condDesc doing a full text search in a column:

<condDesc>
<inputKey original="source" description="Words from the catalog

description, e.g., author names or title words."/>
<phraseMaker>

<code>
yield ("to_tsvector(’english’, source)"

" @@ plainto_tsquery(’english’, %%(%s)s)")%(
base.getSQLKey("source", inPars["source"], outPars))

</code>
</phraseMaker>

</condDesc>

Incidentally, this would go with an index definition like:

<index columns="source" method="gin"

>to_tsvector(’english’, source)</index>

For the HTML form interface, you can influence the widgets chosen by the
renderer to some extent. To get an options list allowing multiple selections,
say:

<condDesc>
<inputKey original="carsfield" multipliticy="multiple">

<values fromdb="carsfield from carsarcs.meta order by carsfield"/>
</inputKey>

</condDesc>

213

Use the showItems="n" attribute of inputKeys to determine how many items in
the selector are shown at one time.

For special effects, you can group inputKeys. This will make them show up
under a common label and in a single line in HTML forms. Here’s an example
for a simple range selector:

<condDesc>
<inputKey name="el" type="text" tablehead="Element"/>

<inputKey name="mfmin" tablehead="Min. Mass Fraction \item">
<property name="cssClass">a_min</property>

</inputKey>

<inputKey name="mfmax" tablehead="Max. Mass Fraction \item">
<property name="cssClass">a_max</property>

</inputKey>

<group name="mf">
<description>Mass fraction of an element. You may leave out

either upper or lower bound.</description>
<property name="label">Mass Fraction between...</property>
<property name="style">compact</property>

</group>

</condDesc>

You will probably want to style the result of this effort using the service ele-
ment’s customCSS property, maybe like this:

<service...>
<property name="customCSS">

input.a_min {width: 5em}
input.a_max {width: 5em}
input.formkey_min {width: 6em!important}
input.formkey_max {width: 6em!important}
span.a_min:before { content:" between "; }
span.a_max:before { content:" and "; }
tr.mflegend td {

padding-top: 0.5ex;
padding-bottom: 0.5ex;
border-bottom: 1px solid black;

}
</property>

</service>

See also the entries on multi-line input, selecting input fields with a widget, and
customizing generated SCS conditions.

TBD: Say something about required. Do we even want to mention widgetFac-
tory?

214

howDoI.html#get-a-multi-line-text-input-for-an-input-key
howDoI.html#make-an-input-widget-to-select-which-columns-appear-in-the-output-table
howDoI.html#change-the-query-issued-on-scs-queries

Formatting the output

TBD

Regression Testing

Introduction

Things break – perhaps because someone foolishly dropped a database table,
because something happened in your upstream, because you changed something
or even because we changed the API (if that’s not mentioned in Changes, we
owe you a beverage of your choice). Given that, having regression tests that
you can easily run will really help your peace of mind.

Therefore, DaCHS contains a framework for embedding regression tests in re-
source descriptors. Before we tell you how these work, some words of advice,
as writing useful regression tests is an art as much as engineering.

Don’t overdo it. There’s little point in checking all kinds of functionality that
only uses DaCHS code – we’re running our tests before committing into the
repository, and of course before making a release. If the services just use cond-
Descs with buildFrom and one of the standard renderers, there’s little point
in testing beyond a request that tells you the database table is still there and
contains something resembling the data that should be there.

Don’t be over-confident. Just because it seems trivial doesn’t mean it cannot
fail. Whatever code there is in the service processing of your RD, be it phrase
makers, output field formatters, custom render or data functions, not to mention
custom renderers and cores, deserves regression testing.

Be specific. In choosing the queries you test against, try to find something
that won’t change when data is added to your service, when you add input
keys or when doing similar maintenance-like this. Change will happen, and
it’s annoying to have to fix the regression test every time the output might
legitimately change. This helps with the next point.

Be pedantic. Do not accept failing regression tests, even if you think you know
why they’re failing. The real trick with useful testing is to keep "normal" output
minimal. If you have to "manually" ignore diagnostics, you’re doing it wrong.
Also, sometimes tests may fail "just once". That’s usually a sign of a race
condition, and you should really try to figure out what’s going on.

Make it fail first. It’s surprisingly easy to write no-op tests that run but won’t fail
when the assertion you think you’re making is no longer true. So, when devel-
oping a test, assert something wrong first, make sure there’s some diagnostics,
and only then assert what you really expect.

215

Be terse. While in unit tests it’s good to test for maximally specific properties
so failing unit tests lead you on the right track as fast as possible, in regression
tests there’s nothing wrong with plastering a number of assertions into one
test. Regression tests actually make requests to a web server, and these are
comparatively expensive. The important thing here is that regression testing is
fast enough to let you run them every time you make a change.

Writing Regression Tests

DaCHS’ regression testing framework is organized a bit along the lines of
python’s unittest and its predecessors, with some differences due to the dif-
ferent scope.

So, tests are grouped into suites, where each suite is contained in a regSuite ele-
ment. These have a (currently unused) title and a boolean attribute sequential

intended for when the tests contained must be executed in the sequence speci-
fied and not in parallel. It defaults to false, which means the requests are made
in random order and in parallel, which speeds up the test runs and, in particular,
will help uncover race conditions.

On the other hand, if you’re testing some sort of interaction across requests (e.g.,
make an upload, see if it’s there, remove it again), this wouldn’t work, and you
must set sequential="True". Keep these sequential suites as short as possible. In
tests within such suites (and only there), you can pass information from one test
to the following one by adding attributes to self.followUp (which are available as
attributes of self in the next test). If you need to manipulate the next URL, it’s at
self.followUp.url.content_. For the common case of a redirect to the url in the
location header (or a child thereof), there’s the pointNextToLocation(child="")

method of regression tests. In the tests that are manipulated like this, the
URL given in the RD should conventionally be overridden in the previous test.
Of course, additional parameters, httpMethods, etc, are still applied in the
manipulated url element.

Regression suites contain tests, represented in regTest elements. These are
procDefs (just like, e.g., rowmakery apply), so you can have setup code, and
you could have a library of parametrizable regTests procDefs that you’d then
turn into regTests by setting their parameters. We’ve not found that terribly
useful so far, though.

You must given them a title, which is used when reporting problems with them.
Otherwise, the crucial children of these are url and, as always with procDefs,
code.

Here are some hints on development:

216

1) Give the test you’re just developing an id; at the GAVO DC, we’re
usually using cur; that way, we run variations of gavo test rdId#cur,
and only the test in question is run.

2) After defining the url, just put an assert False into the test code.
Then run gavo test -Devidence.xml rdId#cur or similar. Then inves-
tigate evidence.xml (possibly after piping through xmlstarlet fo) for
stable and strong indicators that things are working.

3) If you get a BadCode for a test you’re just writing, the message
may not always be terribly helpful. To see what’s actually bugging
python, run gavo --debug test ... and check dcInfos.

RegTest URLs

The url element encapsulates all aspects of building the request. In the simplest
case, you just can have a simple URL, in which case it works as an attribute,
like this:

<regTest title="example" url="svc/form">

...

URLs without a scheme and a leading slash are interpreted relative to the RD’s
root URL, so you’d usually just give the service id and the renderer to be applied.
You can also specify root-relative and fully specified URLs as described in the
documentation of the url element.

White space in URLs is removed, which lets you break long URLs as convenient.

You could have GET parameters in this URL, but that’s inconvient due to both
XML and HTTP escaping. So, if you want to pass parameters, just give them
as attributes to the element:

<regTest title="example">

<url RA="10" DEC="-42.3" SR="1" parSet="form">svc/form</url>

The parSet=form here sets up things such that processing for the form renderer
is performed – our form library nevow formal has some hidden parameters that
you don’t want to repeat in every URL.

To easily translate URLs taken from a browser’s address bar or the form ren-
derer’s result link, you can run gavo totesturl and paste the URLs there. Note
that totesturl fails for values with embedded quotes, takes only the first value of
repeated parameters and is a over-quick hack all around. Patches are gratefully
accepted.

217

The url element hence accepts arbitary attributes, which can be a trap if you
think you’ve given values to url’s private attributes and mistyped their names. If
uploads or authentication don’t seem to happen, check if your attribute ended
up the in the URL (which is displayed with the failure message) and fix the
attribute name; most private url attributes start with http. If you really need to
pass a parameter named like one of url’s private attributes, pass it in the URL
if you can. If you can’t because you’re posting, spank us. After that, we’ll work
out something not too abominable .

If you have services requiring authentication, use url’s httpAuthKey attribute.
We’ve introduced this to avoid having credentials in the RD, which, after all,
should reside in a version control system which may be (and in the case of
GAVO’s data center is) public. The attribute’s value is a key into the file
~/.gavo/test.creds, which contains, line by line, this key, a username and a
password, e.g.:

svc1 testuser notASecret

svc2 regtest NotASecretEither

A test using this would look like this:

<regTest title="Authenticated user can see the light">
<url httpAuthKey="svc1">svc1/qp/light.txt</url>
<code>

self.assertHTTPStatus(200)
</code>

</regTest>

By default, a test will perform a GET request. To change this, set the httpMethod

attribute. That’s particularly important with uploads (which must be POSTed).

For uploads, the url element offers two facilities. You can set a request payload
from a file using the postPayload attribute (the path is interpreted relative to
the resource directory), but it’s much more common to do a file upload like
browsers do them. Use the httpUpload element for this, as in:

<url> <httpUpload name="UPLOAD"

fileName="remote.txt">a,b,c</httpUpload> svc1/async </url>

(which will work as if the user had selected a file remote.txt containing "a,b,c"
in a browser with a file element named UPLOAD), or as in:

<url>
<httpUpload name="UPLOAD" fileName="remote.vot"

source="res/sample.regtest"/>
svc1/async

</url>

218

(which will upload the file referenced in source, giving the remote server the
filename remote.vot). The fileName attribute is optional.

Finally, you can pass arbitrary HTTP headers using the httpHeader element.
This has an attribute key; the header’s value is taken from the element content,
like this:

<url postPayload="res/testData.regtest" httpMethod="POST">
<httpHeader key="content-type">image/jpeg</httpHeader>

>upload/custom</url>

RegTest Tests

Since regression tests are just procDefs, the actual assertions are contained in
the code child of the regTest. The code in there sees the test itself in self, and it
can access self.data (the response content), self.headers (a sequence of header
name, value pairs; note that you should match the names case-insensitively
here), and self.status (the HTTP response code), as well as the URL actually
retrieved in self.url.httpURL (incidentally, that name is right; the regression
framework only supports http, and it’s not terribly likely that we’ll change that).

You should probably only access those attributes in a pinch and instead use the
pre-defined assertions, which are methods on the test objects as in pyunit –
conventional assertions are clearer to read and less likely to break if fixes to the
regression test API become necessary. If you still want to have custom tests,
raise AssertionErrors to indicate a failure.

Here’s a list of assertion methods defined right now:

assertHasStrings(self, *strings) checks that all its arguments are found
within content.

assertHeader(self, key, value) checks that header key has value in the re-
sponse headers.
keys are compared case-insensitively, values are compared literally.

assertLacksStrings(self, *strings) checks that all its arguments are not found
within content.

assertValidatesXSD(self) checks whether the returned data are XSD valid.
As we’ve not yet found a python XSD validator capable enough to deal
with the complex web of schema files in the VO, this requires a little piece
of java (which also means that these tests are fairly resource demanding).
In a checkout of DaCHS, go to the schemata subdirectory and run python
makeValidator.py (this needs a JDK as well as some external libraries; see
the makeValidator source).

219

assertXpath(self, path, assertions) checks an xpath assertion.
path is an xpath (as understood by lxml), with namespace prefixes stat-
ically mapped; there’s currently v2 (VOTable 1.2), v1 (VOTable 1.1), v
(whatever VOTable version is the current DaCHS default), h (the names-
pace of the XHTML elements DaCHS generates), and o (OAI-PMH 2.0).
If you need more prefixes, hack the source and feed back your changes
(monkeypatching self.XPATH_NAMESPACE_MAP is another option).
path must match exactly one element.
assertions is a dictionary mapping attribute names to their expected value.
Use the key None to check the element content, and match for None if
you expect an empty element.
If you need an RE match rather than equality, there’s EqualingRE in your
code’s namespace.
This needs lxml (debian package python-lxml) installed. As it’s only a
matter of time until lxml will become a hard DaCHS dependency, installing
it is a good idea anyway.

getFirstVOTableRow(self) interprets data as a VOTable and returns the first
row as a dictionary
In test use, make sure the VOTable returned is sorted, or you will get
randomly failing tests. Ideally, you’ll constrain the results to just one
match; database-querying cores (which is where order is an issue) also
honor _DBOPTIONS_ORDER).

getVOTableRows(self) parses the first table in a result VOTable and returns
the contents as a sequence of dictionaries.

All of these are methods, so you would actually write self.assertHasStrings(’a’,

’b’, ’c’) in your test code (rather than pass self explicitely.

When writing tests, you can, in addition, use assertions from python’s unittest
TestCases (e.g., assertEqual and friends). This is provided in particular for
use to check values in VOTables coming back from services together with the
getFirstVOTableRow method.

When writing tests, please note that, like all procDef’s bodies, the test code
is macro-expanded by DaCHS. This means that every backslash that should be
seen by python needs to be escaped itself (i.e., doubled). An escaped backslash
in python thus is four backslashes in the RD.

Finally, here’s a piece of .vimrc that inserts a regTest skeleton if you type ge
in command mode (preferably at the start of a line; you may need to fix the
indentation if you’re not indenting with tabs. We’ve thrown in a column skeleton
on gn as well:

220

augroup rd
au!
autocmd BufRead,BufNewFile *.rd set ts=2 tw=79
au BufNewFile,BufRead *.rd map gn i<tab><tab><lt>column name="" type=""<CR><tab>unit="" ucd=""<CR>tablehead=""<CR>description=""<CR>verbLevel=""/><CR><ESC>5kf"a
au BufNewFile,BufRead *.rd map ge i<tab><tab><lt>regTest title=""><CR><tab><lt>url><lt>/url><CR><lt>code><CR><lt>/code><CR><BS><lt>/regTest><ESC>4k

augroup END

Running Tests

The first mode to run the regression tests is through gavo val. If you give it a
-t flag, it will collect regression tests from all the RDs it touches and run them.
It will then output a brief report listing the RDs that had failed tests for closer
inspection.

It is recommended to run something like:

gavo val -tv ALL

before committing changes into your inputs repository. That way, regressions
should be caught.

The tests are ran against the server described through the [web]serverURL config
item. In the recommended setup, this would be a server started on your own
development machine, which then would actually test the changes you made.

There is also a dedicated gavo sub-command test for executing the tests. This
is what you should be using for developing tests or investigating failures flagged
with gavo val. On its command line, you can give on of an RD id or a cross-
rd reference to a test suite, or a cross-rd reference to an individual test. For
example,

gavo test res1/q
gavo test res2/q#suite1

gavo test res2/q#test45

would run all the tests given in the RD res1/q, the tests in the regSuite with
the id suite1 in res2/q, and a test with id="test45 in res2/q, respectively.

To traverse inputs and run tests from all RDs found there, as well as tests from
the built-in RDs, run:

gavo test ALL

221

gavo test by default has a very terse output. To see which tests are failing and
what they gave as reasons, run it with the ’-v’ option.

To debug failing regression tests (or maybe to come up with good things to test
for), use ’-d’, which dumps the server response of failing tests to stdout.

In the recommended setup with a production server and a development machine
sharing a checkout of the same inputs, you can exercise production server from
the development machine by giving the -u option with what your production
server has in its [web]serverURL configuration item. So,

gavo test -u http://production.example.com ALL

is what might help your night’s sleep.

Examples

Here are some examples how these constructs can be used. First, a simple
test for string presence (which is often preferred even when checking XML,
as it’s less likely to break on schema changes; these usually count as noise in
regression testing). Also note how we have escaped embedded XML fragments;
an alternative to this shown below is making the code a CDATA section:

<regTest title="Info page looks ok"
url="siap/info">
<code>

self.assertHasStrings("SIAP Query", "siap.xml", "form",
"Other services", "SIZE</td>", "Verb. Level")

</code>

</regTest>

The next is a test with a "rooted" URL that’s spanning lines, has embedded
parameters (not recommended), plus an assertion on binary data:

<regTest title="NV Maidanak product delivery"
url="/getproduct/maidanak/data/Q2237p0305/Johnson_R/

red_kk050001.fits.gz?siap=true">
<code>

self.assertHasStrings(’\\x1f\\x8b\\x08\\x08’)
</code>

</regTest>

This is how parameters should be passed into the request:

222

<regTest title="NV Maidanak SIAP returns accref.">
<url POS="340.12,3.3586" SIZE="0.1" INTERSECT="OVERLAPS"

_TDENC="True" _DBOPTIONS_LIMIT="10">siap/siap.xml</url>
<code>

self.assertHasStrings(’<TD>AZT 22’)
</code>

</regTest>

Here’s an example for a test with URL parameters and xpath assertions:

<regTest title="NV Maidanak SIAP metadata query"
url="siap/siap.xml?FORMAT=METADATA">

<code>
self.assertXpath("//v1:FIELD[@name=’wcs_cdmatrix’]", {

"datatype": "double",
"ucd": "VOX:WCS_CDMatrix",
"arraysize": "*",
"unit": "deg/pix"})

self.assertXpath("//v1:INFO[@name=’QUERY_STATUS’]", {
"value": "OK",
None: "OK",})

self.assertXpath("//v1:PARAM[@name=’INPUT:POS’]", {
"datatype": "char",
"ucd": "pos.eq",
"unit": "deg"})

</code>

</regTest>

The following is a fairly complex example for a stateful suite doing inline uploads
(and simple tests):

<regSuite title="GAVO roster publication cycle" sequential="True">
<regTest title="Complete record yields some credible output">

<url httpAuthKey="gvo" parSet="form" httpMethod="POST">
<httpUpload name="inFile" fileName="testing_ignore.rd"

><![CDATA[
<resource schema="gvo">

<meta name="description">x</meta>
<meta name="title">A test service</meta>
<meta name="creationDate">2010-04-26T11:45:00</meta>
<meta name="subject">Testing</meta>
<meta name="referenceURL">http://foo.bar</meta>
<nullCore id="null"/>
<service id="run" core="null" allowed="external">

<meta name="shortName">u</meta>
<publish render="external" sets="gavo">

<meta name="accessURL">http://foo/bar</meta>
</publish></service></resource>

]]></httpUpload>upload/form</url>

223

<code><![CDATA[
self.assertHasStrings("#Published</th><td>1</td>")

]]></code>
</regTest>

<regTest title="Publication leaves traces on GAVO list" url="list/custom">
<code>

self.assertHasStrings(
’"/gvo/data/testing_ignore/run/external">A test service’)

</code>
</regTest>

<regTest title="Unpublication yields some credible output">
<url httpAuthKey="gvo" parSet="form" httpMethod="POST">

<httpUpload name="inFile" fileName="testing_ignore.rd"
><![CDATA[
<resource schema="gvo">

<meta name="description">x</meta>
<meta name="title">A test service</meta>
<meta name="creationDate">2010-04-26T11:45:00</meta>
<meta name="subject">Testing</meta>
<meta name="referenceURL">http://foo.bar</meta>
<service id="run" allowed="external">

<nullCore/>
<meta name="shortName">u</meta></service></resource>

]]></httpUpload>upload/form</url>
<code><![CDATA[

self.assertHasStrings("#Published</th><td>0</td>")
]]></code>

</regTest>

<regTest title="Unpublication leaves traces on GAVO list"
url="list/custom">
<code>

self.assertLacksStrings(
’"/gvo/data/testing_ignore/run/external">A test service’)

</code>
</regTest>

</regSuite>

If you still run SOAP services, here’s one way to test them:

<regTest id="soaptest" title="APFS SOAP returns something reasonable">
<url postPayload="res/soapRequest.regtest" httpMethod="POST">

<httpHeader key="SOAPAction">’"useService"’</httpHeader>
<httpHeader key="content-type">text/xml</httpHeader
>qall/soap/go</url>

<code>
self.assertHasStrings(

’="xsd:date">2008-02-03Z</tns:isodate>’,

224

’<tns:raCio xsi:type="xsd:double">25.35’)
</code>

</regTest>

– here, res/soapRequest.regtest would contain the request body that you could,
for example, extract from a tcpdump log.

Datalink Cores
Datalink is an IVOA protocol that allows associating various products and arti-
facts with a data set id. Think the association of error or mask maps, progenitor
datasets, or processed data products, with a data set. It also lets you associate
data processing services with datasets, which allows on-the-fly generation of
cutouts, format conversions or recalibrations. Note that in DaCHS, Datalink
support covers both what the IVOA recommendation on Datalink gives (essen-
tially metadata transport; that’s the dlmeta renderer) and the access services
described (there’s a standard called "AccessData" planned for that; in DaCHS,
that’s the dlget renderer).

A central term for datalink is the pubDID, or publisher DID. This is an identifier
assigned (essentially) by you that points to a concrete dataset. In DaCHS,
datalink services always use pubDIDs as the values of the datalink ID parameter.

Within DaCHS, you can write datalink services using a specialized type of core.
Its function is twofold:

(1) when operated by the dlmeta renderer, it returns the access options
("Datalink document")

(2) when operated by the dlget renderer, it performs some computation
("Processed data")

Function (1) is implemented by DaCHS code working on the metadata of the
Datalink core. Function (2) requires custom code (or the assembly of pre-
provided building blocks).

A datalink core consists of

∙ exactly one descriptor generator,

∙ zero or more data functions, generating and manipulating data

∙ zero or one formatters, formatting the generated and/or manipulated data

∙ zero or more meta makers, generating input parameter descriptions for
data functions and any formatter present and/or related links

225

Here’s how they work together in providing the Datalink functionality:

To generate the Datalink document, the descriptor generator is passed the
pubDID and is expected to return a datalink.ProductDescriptor instance (or
None, in which case the datalink request will be rejected by a 404). In addition
to attributes named after the columns of the product table (and potentially
other attributes added by deriving from the base ProductDescriptor), it has
an attribute data defaulting to None, intended to be filled by the core’s data
generator on data processing runs.

The descriptor is then passed, in turn, to the meta makers, which yield InputKey

or LinkDef instances to describe the retrival options for the product. The com-
bination of both is then formatted to a proper Datalink document and returned,
which concludes the processing of the metadata request.

When a request for processed data comes in, the descriptor generator is again
used to make a product descriptor, and again the input keys are updated as
before. They are then used to build the arguments described by the input keys.

If the context grammar succeeds, the data descriptor is passed to the first
data function together with the arguments parsed. This must fill out the data

attribute of the descriptor or raise a ValidationError for the PUBDID; leav-
ing descriptor as None results in a 500 server error. Descriptor.data could an
rsc.InMemoryTable (e.g., in SSAP) or a products.Products instance, but as long
as the other data functions and the formatter agree on what it is, anything goes.
It will usually be fed from a database, pixels in FITS files, or the like.

This object is then handed through all remaining data functions; these
change the data in place or create a new one as convenient and manipulate
descriptor.data accordingly.

Finally, the data enters the formatter, which actually generates the output,
usually returning a pair of mime type and string to be delivered.

It is a design descision which manipulations are done in the data generator, which
are in later filters, and which perhaps only in the formatter. The advantage of
filters is that they are more flexible and can more easily be reused, while doing
it things in the data generator itself will usually be more efficient, sometimes
much so (e.g., sums being computed within a database rather than in a filter
after all the data had to go through the interface of the database).

Incidentally (we mention it here for lack of a better place) DaCHS automat-
ically adds links for the dataset itself (semantics #this) and a preview of the
dataset (semantics #this) whenever sensible. There are exotic situations in
which that is unwelcome. If you end up in such a situation, in a metaMaker say
descriptor.suppressAutoLinks = True.

226

Descriptors Generators

Descriptor generators (see element descriptorGenerator) are procedure ap-
plications that see a pubDID value and are expected to return a
datalink.ProductDescriptor instance, or something derived from it.

In the end, this usually boils down to figuring out the value of accref in the
product table and using what’s there to construct the descriptor generator.
In the simplest case, the pubDID will be in DaCHS’ "standard" format (see
the getStandardPubDID rowmaker function), in which case the default descriptor
generator works and you don’t have to specify anything. You could manually
insert that default by saying:

<descriptorGenerator procDef="//datalink#fromStandardPubDID"/>

(this happens to be DaCHS’ default if no descriptor generator is given). It’s
functionality is equivalent to this:

<descriptorGenerator>
<code>

return ProductDescriptor.fromAccref("/".join(pubDID.split("/")[4:]))
</code>

</descriptorGenerator>

– which might be a good place to start if you need to write your own d.g., e.g.,
because you have some special logic to encode the accref in the PubDID).

The default ProductDescriptor class exposes all the columns from the products
table, i.e., accref, accessPath, mime, owner, embargo, sourceTable, datalink
(a specialised datalink service for this data set), preview, and previewMime in
addition to the pubDID itself.

A slightly more interesting example is provided by datalink for SSA, where
cutouts and similar is generated from spectra. The actual definition is in
//datalink#sdm_genDesc, but the gist of it is:

<descriptorGenerator>
<setup>

<par key="ssaTD" description="Full reference (like path/rdname#id)
to the SSA table the spectrum’s PubDID can be found in."/>

<code>
from gavo import rsc
from gavo import rscdef
from gavo import svcs

227

class SSADescriptor(ProductDescriptor):
ssaRow = None

@classmethod
def fromSSARow(cls, ssaRow, paramDict):

"""returns a descriptor from a row in an ssa table and
the params of that table.
"""
paramDict.update(ssaRow)
ssaRow = paramDict
res = cls.fromAccref(ssaRow[’accref’])
res.ssaRow = ssaRow
return res

ssaTD = base.resolveCrossId("myres/q#mytable, rscdef.TableDef)
</code>

</setup>

<code>
with base.getTableConn() as conn:

ssaTable = rsc.TableForDef(ssaTD, connection=conn)
matchingRows = list(ssaTable.iterQuery(ssaTable.tableDef,

"ssa_pubdid=%(pubDID)s", {"pubDID": pubDID}))
if not matchingRows:

raise svcs.UnknownURI("No spectrum with pubDID %s known here"%
pubDID)

the relevant metadata for all rows with the same PubDID should
be identical, and hence we can blindly take the first result.
return SSADescriptor.fromSSARow(matchingRows[0],

ssaTable.getParamDict())
</code>

</descriptorGenerator>

Note how we derive from ProductDescriptor to get something that metadata
makers can later consult to figure out the spectral extent, the calibration status,
etc., by combining a row from an SSA table and its parameter dict and stuffing
that into an attribute of the derived class. Also, since SSA tables already contain
a column containing PubDIDs, we can treat them as opaque.

Incidentally, in this case you could stuff the entire code into the the main code
element, saving on the extra setup. However, apart from a minor speed benefit,
keeping things like function or class definitions in setup allows easier re-use of
such definitions in procedure applications and is therefore recommended.

Meta Makers

Meta makers (see element metaMaker) contain code that produces pieces of
service metadata from a data descriptor. All meta makers belonging to a service

228

are unconditionally executed, and all must be generator bodies (i.e., contain a
yield statement).

Meta makers may yield input keys (InputKey instances) and/or link definitions
(LinkDef instances). The input keys make up a service’s interface in the usual
way.

The classes usually required to build whatever meta makers return (InputKey,
Values, Option, LinkDef) are available to the code as local names.

As usual, DaCHS structs – that’s InputKey, Values, and Option here – should
not be constructed directly but only using the MS helper (which is really an alias
for base.makeStruct; it takes care that the special postprocessing of DaCHS
structures takes place).

Parameter Definitions

Hence, a meta maker that generates SSA cutout parameters could look like this:

<metaMaker>
<setup>

<code>
parSTC = stc.parseQSTCS(’SpectralInterval "LAMBDA_MIN" "LAMBDA_MAX"’)

</code>
</setup>
<code>

for ik in genLimitKeys(MS(InputKey, name="LAMBDA",
unit="m", stc=parSTC, ucd="em.wl",
description="Spectral cutout interval",
values=MS(Values,

min=descriptor.ssaRow["ssa_specstart"],
max=descriptor.ssaRow["ssa_specend"]))):

yield ik
</code>

</metaMaker>

(something like this is part of the //datalink#sdm_cutout predefined stream).

The example shows two general techniques for "physical" parameters. For one,
it defines an STC structure. This is again the "quoted STC" as discussed in
the DaCHS tutorial. It is a good idea to create the STC structure in the setup
code since parsing STC-S can be relatively CPU intensive. The STC structure
resulting from should then be passed as the stc keyword parameter to each
input key mentioned in the STC clause.

The second typical technique is the use of the genLimitKeys function. This
takes a "template" key specifying names, units, and everything else that can
be generically specified, and returns a sequence of input keys for the limits

229

http://docs.g-vo.org/DaCHS/tutorial.html

(i.e., minimal and maximal value for this). You’ll almost always want this when
accepting floating-point valued parameters, as matching these exactly is at least
tricky and rarely useful.

If the thing you are matching against actually is a column in a database table,
it is usually a good idea to build the input key from the column, much like with
the original mechanism in condition descriptors. In python code, this looks like
this:

<metaMaker>
<code>

baseIK = InputKey.fromColumn(
rd.getById("orders").getColumnByName("ecorder")

).change(
values=MS(Values,

min=descriptor.ssaRow["order_min"],
max=descriptor.ssaRow["order_max"]))

for ik in genLimitKeys(baseIk):
yield ik

</code>

</metaMaker>

This takes input key metadata from the column ecorder in the table orders.
The change method can take additional keyword/value pairs to change further
properties.

When publishing FITS cubes, you will usually use the
//datalink#fits_makeWCSParams meta maker; it accepts similar QSTCS
specifications as well. To find out what parameter names the individual axes
are mapped to, first use makeWCSParams without the STC metadata:

<service id="d" allowed="dlmeta,dlget,form">
<datalinkCore>

<descriptorGenerator procDef="//datalink#fits_genDesc"/>
<metaMaker procDef="//datalink#fits_makeWCSParams"/>

</datalinkCore>

</service>

Then have a look at the metadata produced for a file. Unless you did something
special, to do that you can just take the accref of a file from the table containing
the products; if the source table was mlqso.cubes, you could figure one out via:

select accref from dc.products where sourcetable=’mlqso.cubes’ limit 1

(talk to postgres directly for this query, dc.products is not available via TAP).

230

The standard pubDID (as assigned using the getStandardPubDID rowmaker func-
tion) uses your datacenter authority (as configured in /etc/gavo.rd, when you
forget it you can also figure it out by using gavo config ivoa authority) and this
accref like this:

ivo://<authority>/~?<accref>

Hence, to retrieve the datalink document for mlqso/data/FBQ0951_data.fits on
the server dc.g-vo.org using the datalink renderer on the mlqso/q/d service, you’d
write:

curl -DID=ivo://org.gavo.dc/~?mlqso/data/FBQ0951_data.fits \

http://dc.g-vo.org/mlqso/q/d/dlmeta | xmlstarlet fo

(of course, xmlstarlet isn’t actually necessary, and you can use wget if you want,
but you get the idea).

In there you’ll see the parameter names for the axes, e.g.,:

$ curl -s -FID="ivo://org.gavo.dc/~?mlqso/data/FBQ0951_data.fits" \
>> http://dc.g-vo.org/mlqso/q/d/dlmeta \
>> | xmlstarlet sel -N v=http://www.ivoa.net/xml/VOTable/v1.2 -T \
>> -t -m "//v:PARAM" -v "@name" -nl
serviceAccessURL
ID
DEC_MIN
DEC_MAX
RA_MIN
RA_MAX
WAVELEN_1_MIN

WAVELEN_1_MAX

If the image is calibrated using a catalog on ICRS, with the wavelength given
as measured, change the fits_makeWCSParams call to:

<metaMaker procDef="//datalink#fits_makeWCSParams>
<setup>

<bind key="stcs"
>(’PositionInterval ICRS "RA_MIN" "DEC_MIN" "RA_MAX" "DEC_MAX"\n’

’SpectralInterval TOPOCENTER "WAVELEN_1_MIN" "WAVELEN_1_MAX"’)
</bind>

</setup>

</metaMaker>

The effect should be a group like:

231

<GROUP utype="stc:CatalogEntryLocation">
<PARAM arraysize="*" datatype="char"

name="CoordFlavor"
utype="stc:AstroCoordSystem.SpaceFrame.CoordFlavor" value="SPHERICAL"/>

<PARAM arraysize="*" datatype="char"
name="CoordRefFrame"
utype="stc:AstroCoordSystem.SpaceFrame.CoordRefFrame" value="ICRS"/>

<PARAM arraysize="*" datatype="char"
name="ReferencePosition"
utype="stc:AstroCoordSystem.SpectralFrame.ReferencePosition"
value="TOPOCENTER"/>

<PARAM arraysize="*" datatype="char" name="URI"
utype="stc:DataModel.URI"
value="http://www.ivoa.net/xml/STC/stc-v1.30.xsd"/>

<PARAMref ref="apausoh"
utype="stc:AstroCoordArea.Position2VecInterval.HiLimit2Vec.C1"/>

<PARAMref ref="aedwpnn"
utype="stc:AstroCoordArea.Position2VecInterval.HiLimit2Vec.C2"/>

<PARAMref ref="asausoh"
utype="stc:AstroCoordArea.Position2VecInterval.LoLimit2Vec.C1"/>

<PARAMref ref="ahgwpnn"
utype="stc:AstroCoordArea.Position2VecInterval.LoLimit2Vec.C2"/>

<PARAMref ref="ahiusoh"
utype="stc:AstroCoordArea.SpectralInterval.HiLimit"/>

<PARAMref ref="aeiusoh"
utype="stc:AstroCoordArea.SpectralInterval.LoLimit"/>

</GROUP>

All this is explained in [VOTSTC].

Link Definitions

When returning link definitions, the tricky part mostly is to come up with the
URLs. Use the makeAbsoluteURL rowmaker function to make them from relative
URLs; the rest just depends on your URL scheme. An example could look like
this:

<metaMaker>
<code>

yield LinkDef(descriptor.pubDID,
makeAbsoluteURL("get/"+descriptor.accref[:-5]+".err.fits"),
contentType="image/fits", semantics="#error",
description="Errors for this dataset")

yield LinkDef(descriptor.pubDID,
"http://foo.bar/raw/"+descriptor.accref.split("/")[-1],
contentType="image/fits", semantics="#progenitor",
description="Un-flatfielded, uncalibrated source data")

</code>

</metaMaker>

232

In addition to the pubDID and the access URL, LinkDefs accept keyword argu-
ments for the columns of the //datalink#dlresponse table. At the time of this
writing, these include:

errorMessage If your code cannot make a link and wants to communicate that
to a client, you leave accessURL empty (None) and set a message here.

description A human-readable short information what’s behind the link

semantics A term from a controlled-vocabulary describing what’s behind the
link (see below)

contentType An (advisory) media type of whatever accessURL points to.
Please make sure it’s consistent with what the server actually returns
if the protocol used by accessURL supports that.

contentLength The (approximate) size of the resource at accessURL, in bytes.

With the exception of semantics, all auxillary data defaults to None if not
given, and it’s legal to leave it at that. Semantics must be non-NULL, even if
an error message is generated. To make sure that’s true, DaCHS inserts a non-
informational URL, which preferentially shouldn’t escape to the user. Hence,
please set semantics on LinkDefs, and if possible choose one of the terms given
at http://www.ivoa.net/rdf/datalink/core

You can inspect the definition of the datalinks table active in your system by
saying:

gavo admin dumpDF //datalink | less

(the table definition is right at the top).

Data links frequently should expose some data that’s not in the product table
(e.g., because you don’t want the error files to show up there). In such cases, a
good pattern is to put a static renderer next to the datalink renderer and then
write a meta maker like this:

<service id="d" allowed="dlget,dlmeta,static">
<property name="staticData">data/errors</property>

<datalinkCore>
...
<metaMaker>

<code>
stem = descriptor.accref.split("/")[-1].split("_")[0]
yield LinkDef(descriptor.pubDID, makeAbsoluteURL(

233

http://www.ivoa.net/rdf/datalink/core

"\rdId/d/static/%s_err.fits"%stem),
contentType="image/fits", semantics="#error")

</code>
</metaMaker>

</datalinkCore>

</service>

Note, however, that the static renderer does not enforce any access control.
That means that embargoed files must never be within the staticData (or they
are not embargoed any more...)

Metadata Error Messages

Both description generators and meta makers can return (or yield, in the case of
meta makers) error messages instead of either a descriptor or a link definition.
This allows more fine-tuned control over the messages generated than raising
an exception.

Error messages are constructed using class functions of DatalinkFault, which is
visible to both procedure types. The class function names correspond to the
message types defined in the datalink spec and match the semantics given there:

∙ AuthenticationFault

∙ AuthorizationFault

∙ NotFoundFault

∙ UsageFault

∙ TransientFault

∙ FatalFault

∙ Fault

Thus, a descriptor generator could look like this:

<descriptorGenerator>
<setup>

<code>
class MyCustomDescriptor(ProductDescriptor):

...
</code>

</setup>
<code>

with base.getTableConn() as conn:
matchingRows = list(conn.queryToDicts(

234

"select physPath from schema.myTable where pub_did=%(pubDID)s",
locals()))

if not matchingRows:
return DatalinkFault.NotFoundFault(pubDID,

"No dataset with this pubDID known here")
return MyCustomDescriptor.fromFile(matchingRows[0]["physPath"])

</code>

</descriptorGenerator>

Where sensible, you should pass (as a keyword argument) semantics (as for
LinkDefs) to the DatalinkFault’s constructor; this would indicate what kind of
link you wanted to create.

Data Functions

Data functions (see element dataFunction) generate or manipulate data. They
see the descriptor and the arguments, parsed according to the input keys pro-
duced by the meta makers, where the descriptor’s data attribute is filled out by
the first data function called (the "generating data function").

As described above, DaCHS does not enforce anything on the data attribute
other than that it’s not None after the first data function has run. It is the RD
author’s responsibility to make sure that all data functions in a given datalink
core agree on what data is.

All code in a request for processed data is also passed the input parameters as
processed by the context grammar. Hence, the code can rely on whatever con-
tract is implicit in the context grammar, but not more. In particular, a datalink
core has no way of knowing what data functions expects which parameters. If
no value for a parameter was provided on input, the corresponding value is None
but a data function using it still is called.

An example for a generating data function is //datalink#generateProduct, which
may be convenient when the manipulations operate on plain local files; it basi-
cally looks like this:

<dataFunction>
<code>

descriptor.data = products.getProductForRAccref(descriptor.accref)
</code>

</dataFunction>

(the actual implementation lets you require certain mime types and is therefore
a bit more complicated).

Another generating data function, this time creating a Data instance containing
a spectral data model-compliant structure, is in //datalink#sdm_genData and
looks essentially like this:

235

<dataFunction>
<code>

from gavo import rscdef
from gavo.protocols import sdm
builder = base.resolveCrossId(

"flashheros/q#buildsdm, rscdef.DataDescriptor)
descriptor.data = sdm.makeSDMDataForSSARow(descriptor.ssaRow, builder)

</code>

</dataFunction>

More on this will be discussed in our section on SDM support.

Filtering data functions should always come with a corresponding metaMaker.
As an example, continuing the spectral cutout example above, is again in
//datalink#sdm_cutout. It simply looks like this:

<dataFunction>
<code>

if not args.get("LAMBDA_MIN") and not args.get("LAMBDA_MAX"):
return

from gavo.protocols import sdm
sdm.mangle_cutout(

descriptor.data.getPrimaryTable(),
args["LAMBDA_MIN"] or -1, args["LAMBDA_MAX"] or 1e308)

</code>

</dataFunction>

There are situations in which a data function must shortcut, mostly because
it is doing something other than just "pushing on" descriptor.data. Examples
include preview producers or a data function that returns the a FITS header.
For cases like this, data functions can raise one of DeliverNow (which means
descriptor.data must be something servable, see Data Formatters and causes
that to be immediately served) or FormatNow (which immediately goes to the
data formatter; this is less useful).

Here’s an example for FormatNow; a similar thing is contained in the STREAM
//datalink#fits_genKindPar:

<dataFunction>
<setup>

<code>
from gavo.utils import fitstools

</code>
</setup>
<code>

if args["KIND"]=="HEADER":
descriptor.data = ("application/fits-header",

236

fitstools.serializeHeader(descriptor.data[0].header))
raise DeliverNow()

</code>

</dataFunction>

Data Formatters

Data formatters (see element dataFormatter) take a descriptor’s data attribute
and build something serveable out of it. Datalink cores do not absolutely need
one; the default is to return descriptor.data (the //datalink#trivialFormatter,
which might be fine if that data is serveable itself).

What is serveable? The easiest thing to come up with is a pair of content type
and data in byte strings; if descriptor.data is a Table or Data instance, the
following could work:

<dataFormatter>
<code>

from gavo import formats

return "text/plain", formats.getAsText(descriptor.data)
</code>

</dataFormatter>

Another example is an excerpt from //datalink#sdm_cutout:

<dataFormatter>
<code>

from gavo.protocols import sdm

if len(descriptor.data.getPrimaryTable().rows)==0:
raise base.ValidationError("Spectrum is empty.", "(various)")

return sdm.formatSDMData(descriptor.data, args["FORMAT"])
</code>

</dataFormatter>

(this goes together with a metaMaker for an input key describing FORMAT).

An alternative is to return something that has a renderHTTP(ctx) method
that works in nevow. This is true for the Product instances that
//datalink#generateProduct generates, for example. You can also write some-
thing yourself by inheriting from protocols.products.ProductBase and overriding
its iterData method.

If you don’t inherit from ProductBase, take care that this renderHTTP runs
in the main server loop. If it blocks, the server blocks, so make sure that this

237

doesn’t happen. The conventional way would be to return, from the render-
HTTP method, some twisted producer. Non-Product nevow resources will also
not work with asynchronous datalink at this point.

Registry Matters

You can publish the metadata generating endpoint on your service by saying
<publish render="dlmeta" sets="ivo_managed"/>. However, that is not recom-
mended, as it clutters the registry with services that are not really usable after
discovery.

An alternative is to add the capability to the service that houses the discovered
datasets. TODO: Tell people how :-)

Datalink and Obscore

In particular for larger datasets like cubes, it is rude to put the entire dataset
into an obscore table. Although obscore gives expected download sizes, clients
nevertheless do not usually expecte to have to retrieve several gigabytes or even
terabytes of data when dereferencing an obscore access URL.

Instead, the access URL in the obscore table can point to a datalink service.
There are various ways to effect this, but the recommended one is to precompute
datalink URLs in the embedding table and then pass that column to obscore.
This entails defining a suitable column, which could look like this:

<column name="dlurl" type="text"
ucd="meta.ref.url"
tablehead="DL"
description="URL of a datalink document for this dataset"

verbLevel="1" displayHint="type=url"/>

Then fill this column in the rowmaker:

<var key="obs_id">\standardPubDID</var>
<map key="dlurl">makeAbsoluteURL(

"\rdId/*dl*/dlmeta?ID="+urllib.quote(@obs_id))</map>

– you’ll need to change *dl* to the id of your datalink service. It is true that this
stores quite a bit of stuff in the database that could be computed at runtime.
However, even when you have 1e5 datasets, we’d be only talking of savings
of the order of 10 MB, at the cost of a seriously ugly obscore expression and
reduced debuggability. Having said that, it wouldn’t be too hard to build these
URLs in the obscore mixin. With these column, however, you can just state:

238

<mixin
accessURL="dlurl"
size="10"
mime="’application/x-votable+xml;content=datalink’"
... (all the other stuff) ...

>//obscore#publish</mixin>

This says that what’s coming back is going to be about 10k; it’s hard to predict
the exact size of a datalink response, and there’s no need to sweat things for
a couple of k more or less. The mime type given here is defined by Datalink
exactly this purpose. This is non-negotiable if you want clients to understand
your data.

Datalink Examples

FITS cutout service

A plain FITS cutout service is assembled like this:

<service id="dl">
<meta name="title">Generic FITS datalink service</meta>
<datalinkCore>

<descriptorGenerator procDef="//datalink#fits_genDesc"/>
<metaMaker procDef="//datalink#fits_makeWCSParams"/>
<dataFunction procDef="//datalink#fits_makeHDUList"/>
<dataFunction procDef="//datalink#fits_doWCSCutout"/>
<FEED source="//datalink#fits_genKindPar"/>
<dataFormatter procDef="//datalink#fits_formatHDUs"/>

</datalinkCore>

</service>

This works for all FITS files in the products table and has no usable STC
metadata. Good datalink services do better; by giving more metadata, you of
course commit to certain FITS structures, which means that you should restrict
to only those files that actually match your assumptions. The easiest way to
do this is to structure your input directories accordingly and then filter early by
using fits_getDesc’s accrefStart parameter. The STC declaration was already
discussed above, and so a more realistic datalink service might look like this:

<service id="dl">
<meta name="title">Datalink service for califa cubes</meta>
<datalinkCore>

<descriptorGenerator procDef="//datalink#fits_genDesc">
<bind key="accrefStart">califa/data/cubes"</bind>

</descriptorGenerator>
<metaMaker procDef="//datalink#fits_makeWCSParams">

<bind key="stcs"

239

>(’PositionInterval ICRS "RA_MIN" "DEC_MIN" "RA_MAX" "DEC_MAX"\n’
’SpectralInterval TOPOCENTER "WAVELEN_1_MIN" "WAVELEN_1_MAX"’)

</bind>
</metaMaker>

<dataFunction procDef="//datalink#fits_makeHDUList"/>
<dataFunction procDef="//datalink#fits_doWCSCutout"/>
<FEED source="//datalink#fits_genKindPar"/>
<dataFormatter procDef="//datalink#fits_formatHDUs"/>

</datalinkCore>

</service>

All of this (and potentially more as we expand the manipulation options) is in-
cluded with the //datalink#fits_standardDLFuncs STREAM; the above speci-
fication then boils down to:

<service id="dl">
<meta name="title">Shortened FITS datalink service.</meta>
<datalinkCore>

<FEED source="//datalink#fits_standardDLFuncs"
stcs=’PositionInterval ICRS "RA_MIN" "DEC_MIN" "RA_MAX"

"DEC_MAX"\n
SpectralInterval TOPOCENTER "WAVELEN_1_MIN" "WAVELEN_1_MAX"’

accrefStart="califa/data/cubes"/>
</datalinkCore>

</service>

TODO: Custom function, return link to error file.

SSAP auxillary datalink

Another use for datalink cores in DaCHS is for server-side processing of spectra.
A typical service there looks like this:

<service id="ssaaux" allowed="dlmeta,dlget">
<meta name="title">Datalink service to retrieve individual spectra</meta>
<datalinkCore>

<descriptorGenerator procDef="//datalink#sdm_genDesc">
<bind name="ssaTD">"\rdId#slitspectra"</bind>

</descriptorGenerator>
<dataFunction procDef="//datalink#sdm_genData">

<bind name="builder">"\rdId#get_slitcomponent"</bind>
</dataFunction>
<FEED source="//datalink#sdm_plainfluxcalib"/>
<FEED source="//datalink#sdm_cutout"/>
<FEED source="//datalink#sdm_format"/>

</datalinkCore>

</service>

240

For SDM processing, the descriptor contains the SSA row, and thus the de-
scriptor generator needs to know the SSA table that keeps the spectra to be
processed. It is here identified using a full reference (i.e., including the RD id)
to the table definition, in the ssaTD parameter of sdm_genData; this must of
course match whatever is the queriedTable of the core of the SSA service that
refers to this datalink service.

The sdm_genData data function should again cover most uses of this. Its parame-
ter, however, is somewhat more involved. The data attribute of SDM descriptors
contains SDM compliant data items, which need to be created using appropriate
RD data elements. Such a data element needs to be referenced in the builder

parameter of sdm_genData, again including the RD in the reference.

To define this builder, you first need to define an instance table. The
columns that are in there depend on your data. In the simplest case, the
//ssap#sdm-instance mixin is sufficient and bring columns name flux and
spectral. Here’s how you’d add flux errors if you needed to:

<table id="instance" onDisk="False">
<mixin ssaTable="slitspectra"

spectralDescription="Wavelength"
fluxDescription="Flux"
>//ssap#sdm-instance</mixin>

<meta name="description">A spectrum from a slit spectrum obtained
for systems of quasars and lensing galaxies. See
ivo://org.gavo.dc/mlqso/q/q</meta>

<column name="fluxerror" ucd="stat.error;phot.flux.density;em.wl"/>

</table>

What’s referenced in the datalink core’s builder data function then is a data

element that builds this table. Here’s one that fills the table from the database:

<data id="get_slitcomponent">
<!-- datamaker to pull spectra values out of the database -->
<embeddedGrammar>

<iterator>
<code>

obsId = self.sourceToken["accref"].split("/")[-1]
with base.getTableConn() as conn:

for row in conn.queryToDicts(
"SELECT lambda as spectral, flux, error as fluxerror"
" WHERE obsId=%(obsid)s ORDER BY lambda"):

yield row
</code>

</iterator>
</embeddedGrammar>

241

<make table="instance">
<parmaker>

<apply procDef="//ssap#feedSSAToSDM"/>
</parmaker>

</make>

</data>

The parmaker with the //ssap#feedSSAToSDM call is generic. You will in general
have to write custom code for the embedded grammar; just yield rows matching
the instance table.

Product Previews
DaCHS has built-in machinery to generate previews from normal, 2D FITS and
JPEG files, where these are versions of the original dataset scaled to be about
200 pixels in width, delivered as JPEG files. These previews are shown on
mousing over product links in the web interface, and they turn up as preview
links in datalink interfaces. This also generates previews for cutouts.

For any other sort of data, DaCHS does not automatically generate previews.
To still provide previews – which is highly recommended – there is a framework
allowing you to compute and serve out custom previews. This is based on the
preview and preview_mime columns which are usually set using parameters in
//products#define.

You could use external previews by having http (or ftp) URLs, which could look
like this:

<rowfilter procDef="//products#define">
...
<bind key="preview">("http://example.org/previews/"

+"/".join(\inputRelativePath.split("/")[2:]))</bind>
<bind key="preview_mime">"image/jpeg"/bind>

</rowfilter>

(this assumes takes away to path elements from the relative paths, which typ-
ically reproduces an external hierachy). If you need to do more complex ma-
nipulations, you can have a custom rowfilter, maybe like this if you have both
FITS files (for which you want DaCHS’ default behaviour selected with AUTO)
and .complex files with some external preview:

<rowfilter name="make_preview_paths">
<code>

srcName = os.path.basename(rowIter.sourceToken)
if srcName.endswith(".fits"):

row["preview"] = ’AUTO’

242

row["preview_mime"] = None
else:

row["preview"] = (’http://example.com/previews’
+os.path.splitext(srcName)[0]+"-preview.jpeg")

row["preview_mime"] = ’image/jpeg’
yield row

</code>
</rowfilter>
<rowfilter procDef="//products#define">

...
<bind key="preview">@preview</bind>
<bind key="preview_mime">@preview_mime</bind>

</rowfilter>

More commonly, however, you’ll have local previews. If they already exist, use
a static renderer and enter full local URLs as above.

If you don’t have pre-computed previews, let DaCHS handle them for you. You
need to do three things:

a) define where the preview files are. This happens via a previewDir

property on the importing data descriptor, like this:
<data id="import">

<property key="previewDir">previews</property>

...

b) say that the previews are standard DaCHS generated in the
//products#define rowfilter. The main thing you have to decide here
is the MIME type of the previews you’re generating (i.e., use the
standardPreviewPath macro unless you know what you are doing):

<rowfilter procDef="//products#define">
<bind name="table">"\schema.data"</bind>
<bind name="mime">"image/fits"</bind>
<bind name="preview_mime">"image/jpeg"</bind>
<bind name="preview">\standardPreviewPath</bind>

</rowfilter>

c) actually compute the previews. This is usually not defined in the
RD but rather using DaCHS’ processing framework. Precomputing
previews in the processor documentation covers this in more detail;
the upshot is that this can be as simple as:

from gavo.helpers import processing

class PreviewMaker(processing.SpectralPreviewMaker):
sdmId = "build_sdm_data"

if __name__=="__main__":

processing.procmain(PreviewMaker, "flashheros/q", "import")

243

http://docs.g-vo.org/DaCHS/processors.html#precomputing-previews
http://docs.g-vo.org/DaCHS/processors.html#precomputing-previews

Writing Custom Cores
While DaCHS provides cores for many common operations -- in particular,
database queries and wrapped external binaries --, there are of course services
needing to do things not covered by what the shipped cores do. Some such
cases still follow the basic premise of services: GET or POST parameters in,
something table-like out. For these cases, use custom cores (if even this does
not provide sufficent functionality, write a custom renderer).

For simple cases, rather than having the code in a separate module it’s nicer to
keep everything together in the RD. This is very similar; Python Cores instead
of Custom Cores explains the differences.

Defining a Custom Core

To do this, you need to write a python module. The standard location for those
is in the bin/ subdirectory of the resource directory.

You will usually want to inherit from core:

from gavo import rsc
from gavo.svcs import core

class Core(core.Core):

The framework will always look of an object named "Core" in the module and
use this as the custom core.

The core needs an InputTable and an OutputTable like all cores. You could
define it in the resource descriptor like this:

<customCore id="createCore" module="bin/create">
<inputTable>

<inputKey .../>
</inputTable>
<outputTable>

<column name="itemsAdded" type="integer" tablehead="Items added"/>
</outputTable>

</customCore>

It’s probably a better idea to define it in the code, though, since then it will
work without further specifications. The definitions in the code can still be
overridden from an RD for special effects. Embedding the definitions is done
using the class attributes inputTableXML and outputTableXML:

244

class Core(core.Core):
inputTableXML = """<inputTable>

<inputKey name="fileSrc" type="file" tablehead="Local file"
description="A local file to upload (overrides source URL if given).">

<inputKey name="tableName" type="text" tablehead="Target Table"
description="Name of the table to match against.

Only tables available for ADQL (see there) can be used here.">
<values fromdb="tablename from dc_tables where adql=True"/>

</inputTable>
"""

outputTableXML = """<outputTable/>"""

You should not override the constructor. If you need to perform "expensive"
instanciations, override the completeElement method, as in the following tem-
plate:

def completeElement(self):
<your code>

self._completeElementNext(Core)

The call to _completeElementNext ensures that the remaining completeElement
methods are executed.

Giving the Core Functionality

To have the core do something, you have to override the run method, which
has to have the following signature:

run(service, inputTable, queryMeta) -> stuff

The stuff returned will ususally be a Table instance (that need not match the
outputTable definition -- the latter is targetted at the registry and possibly
applications like output field selection). The standard renderers also accept a
mime type and a string containing some data and will deliver this as-is. With
custom renderers, you could return basically anything you want.

Services come up with some idea of the schema of the table they want to return
and adapt tables coming out of the core to this. Sometimes, you want to
suppress this behaviour, e.g., because the service’s ideas are off. In that case,
set a noPostprocess atttribute on the table to any value.

service is a service instance. In particular, you can access the RD you are
running in through its rd attribute. This is useful if you need to resolve, e.g.,
table references (which, in this case, could be given as a service property):

245

pertainingTable = service.rd.getById(

service.getProperty("pertainingTable"))

inputTable is a Table instance. Unless the service has a fancy inputDD, you
simply find the inputKey values in the table’s parameters:

val = inputTable.getParam("fileSrc")

This val will be a simple value if the inputKey has multiplicity single or
force-single, a list if it has multiplicity multiple. It will be None if a non-
required parameter is missing.

As said above, you could return finished documents from your custom core.
It’s usually friendlier and more flexible if you return tables. To build a table
matching the output table, use the core’s outputTable (which is actually a table
definition). This could look like this:

res = rsc.TableForDef(self.outputTable)

res.addRow({"foo": 3, "bar": 8})

The rows are rowdicts as genrated by rowmakers (which you could use, too).
In many cases, it may be more convenient to collect the data up front and then
create the output table with ready-made rows:

rows = [{"foo": 3, "bar": 8}]

return rsc.TableForDef(self.outputTable, rows=rows)

Lastly, if there’s parsing involved in coming up with the output table, it’s prob-
ably a good idea to simply write a normal data item and arrange for whatever
you come up with to be parsed. For a data item resparser, this would then look
like this:

with open("myFile") as src:

return rsc.makeData(rd.getById("resparser"), forceSource=src)

Errors

To bail out from processing, raise a validation error. Construct it with a message
and the name of an input key. At least for the form renderer, this causes a
sensible error message with some hint as the originating input field, next to the
offending input field:

raise base.ValidationError("Invalid file name", "rdsrc")

246

Database Options

The standard DB cores receive a "table widget" on form generation, including
sort and limit options. To make the Form renderer output this for your core as
well, define a method wantsTableWidget() -> True.

The queryMeta that you receive in run has a dbLimit key. It contains the user
selection or, as a fallback, the global db/defaultLimit value. These values are
integers.

So, if you order a table widget, you should do something like:

cursor.execute("SELECT LIMIT %(queryLimit)s",

{"queryLimit": queryMeta["dbLimit"],...})

In general, you should warn people if the query limit was reached; a simple way
to do that is:

if len(res)==queryLimit:
res.addMeta("_warning", "The query limit was reached. Increase it"

" to retrieve more matches. Note that unsorted truncated queries"
" are not reproducible (i.e., might return a different result set"

" at a later time).")

where res would be your result table. _warning metadata is displayed in both
HTML and VOTable output, though of course VOTable tools will not usually
display it.

Inheriting from TableBasedCore

TBD (This does not work right now; complain if you need to do it)

Python Cores instead of Custom Cores

If you only have a couple of lines of python, you don’t have to have a separate
module. Instead, use a python core. In it, you essentially have the run method as
discussed in Giving the Core Functionality in a standard procApp. The advantage
is that interface and implementation is nicely bundled together. The following
example should illustrate the use of such python cores; note that rsc already is
in the procApp’s namespace:

247

<pythonCore>
<inputTable>

<inputKey name="opre" description="Operand, real part"
required="True"/>

<inputKey name="opim" description="Operand, imaginary part"
required="True"/>

<inputKey name="powers" description="Powers to compute"
type="integer" multiplicity="multiple"/>

</inputTable>
<outputTable>

<outputField name="re" description="Result, real part"/>
<outputField name="im" description="Result, imaginary part"/>
<outputField name="log"

description="real part of logarithm of result"/>
</outputTable>

<coreProc>
<setup>

<code>
import cmath

</code>
</setup>
<code>

powers = inputTable.getParam("powers")
if powers is None:

powers = [1,2]
op = complex(inputTable.getParam("opre"),

inputTable.getParam("opim"))

rows = []
for p in powers:

val = op**p
rows.append({

"re": val.real,
"im": val.imag,
"log": cmath.log(val).real})

return rsc.TableForDef(self.outputTable, rows=rows)
</code>

</coreProc>

</pythonCore>

As an additional service, DaCHS executes your python cores in a sandbox di-
rectory, so you can create temporary files to your heart’s delight; they will be
torn down once the core is finished.

Custom UWSes
Universal Worker Systems (UWSes) allow the asynchronous operation of ser-
vices, i.e., the server runs a job on behalf of the user without the need for a
persistent connection.

248

DaCHS supports async operations of TAP and datalink out of the box. If you
want to run async services defined by your own code, there are a few things to
keep in mind.

(1) You’ll need to prepare your database to keep track of your custom jobs (just
once):

gavo imp //uws enable_useruws

(2) You’ll have to allow the uws.xml renderer on the service in question.

(3) Things running within a UWS are fairly hard to debug in DaCHS right now.
Until we have good ideas on how to make these things a bit more accessible,
it’s a good idea to at least for debugging also allow synchronous renderers, for
instance, form or api. If something goes wrong, you can do a sync query that
then drops you in a debugger in the usual manner (see the debugging chapter
in the tutorial).

(4) For now, the usual queryMeta is not pushed into the uws handler (there’s
no good reason for that). We do, however, transport on DALI-type RESPON-
SEFORMAT. To enable that on automatic results (see below), say:

<inputKey name="responseformat" description="Preferred

output format" type="text"/>

in your input table.

(5) All UWS parameters are lowercased and only available in lowercased form to
server-side code. To allow cores to run in both sync and async without further
worries, just have lowercase-only parameters.

(6) As usual, the core may return either a pair of (media type, content) or a
data item, which then becomes a UWS result named result with the proper
media type. You can also return None (which will make the core incompatible
with most other renderers). That may be a smart thing to do if you’re producing
multiple files to be returned through UWS. To do that, there’s a job attribute on
the inputTable that has an addResult(source, mediatype, name) method. Source
can be a string (in which case the string will be the result) or a file open for
reading (in which case the result will be the file’s content). Input tables of
course don’t have that attribute unless they come from the uws rendererer.
Hence, a typical pattern to use this would be:

if hasattr(inputTable, "job"):
with inputTable.job.getWritable() as wjob:

wjob.addResult("Hello World.\\n", "text/plain", "aux.txt")

249

or, to take the results from a file that’s already on-disk:

if hasattr(inputTable, "job"):
with inputTable.job.getWritable() as wjob:

with open("other-result.txt") as src:

wjob.addResult(src, "text/plain", "output.txt")

Right now, there’s no facility for writing directly to UWS result files. Ask if you
need that.

(7) UWS lets you add arbitrary files using standard DALI-style uploads. This
is enabled if there are file-typed inputKeys in the service’s input table. These
inputKeys are otherwise ignored right now. See [DALI] for details on how these
inputs work. To create an inline upload from a python client (e.g., to write a
test), it’s most convenient to use the requests package, like this:

import requests

requests.post("http://localhost:8080/data/cores/pc/uws.xml/D2hFEJ/parameters",
{"UPLOAD": "stuff,param:upl"},

files = {"upl": open("zw.py")})

From within your core, use the file name (the name of the input key) and pull
the file from the UWS working directory:

with open(os.path.join(inputTable.job.getWD(), "mykey")) as f:

...

Hint on debugging: gavo uwsrun doesn’t check the state the job is in, it will
just try to execute it anyway. So, if your job went into error and you want to
investicate why, just take its id and execute something like:

gavo --traceback uwsrun i1ypYX

Custom Pages
While DaCHS isn’t actually intended to be an all-purpose server for web appli-
cations, sometimes you want to have some gadget for the browser that doesn’t
need VO protocols. For that, there is customPage, which is essentially a bare-
bones nevow page. Hence, all (admittedly sparse) nevow documentation applies.
Nevertheless, here are some hints on how to write a custom page.

First, in the RD, define a service allowing a custom page. These normally have
no cores (the customPage renderer will ignore the core):

250

<service id="ui" core="null" allowed="custom"
customPage="res/registration.py">
<meta name="shortName">DOI registration</meta>
<meta name="title">VOiDOI DOI registration web service</meta>

</service>

The python module referred to in customPage must define a MainPage nevow
resource. The recommended pattern is like this:

from nevow import tags as T

from gavo import web
from gavo.imp import formal

class MainPage(
formal.ResourceMixin,
web.CustomTemplateMixin,
web.ServiceBasedPage):

name = "custom"
customTemplate = "res/registration.html"

workItems = None

@classmethod
def isBrowseable(self, service):

return True

def form_ivoid(self, ctx, data={}):
form = formal.Form()
form.addField("ivoid", formal.String(required=True), label="IVOID",

description="An IVOID for a registred VO resource"),
form.addAction(self.submitAction, label="Next")
return form

def render_workItems(self, ctx, data):
if self.workItems:

return ctx.tag[T.li[[m for m in self.workItems]]]
return ""

def submitAction(self, ctx, form, data):
self.workItems = ["Working on %s"%data["ivoid"]]

return self

The formal.ResourceMixin lets you define and interpret forms. The
web.ServiceBasedPage does all the interfacing to the DaCHS (e.g., credential
checking and the like). The web.CustomTemplateMixin lets you get your template
from a DaCHS template (cf. templating guide) from a resdir-relative directory
given in the customTemplate attribute. For widely distributed code, you should

251

http://docs.g-vo.org/DaCHS/templating.html

additionaly provide some embedded stan fallback in the defaultDocFactory at-
tribute -- of course, you can also give the template in stan in the first place.

On form_invoid and submitAction see below.

This template could, for this service, look like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:n="http://nevow.com/ns/nevow/0.1">

<head>
<title>VOiDOI: Registration</title>
<n:invisible n:render="commonhead"/>

</head>
<body n:render="withsidebar">

<h1>VOiDOI: Register your VO resource</h1>
<ul n:render="workItems"/>
<p>VOiDOI lets you obtain DOIs for registered VO services.</p>

<p>In the form below, enter the IVOID of the resource you want a DOI for.
If the resource is known to our registry but has no DOI yet, the registred
contact will be sent an e-mail to confirm DOI creation.</p>
<n:invisible n:render="form ivoid"/>

</body>

</html>

Most of the details are explained in the templating guide. The exception is the
form ivoid. This makes the formal.ResourceMixin call the form_ivoid in MainPage

and put in whatever HTML/stan that returns. If nevow detects that the request
already results from filling out the form, it will execute what your registred in
addAction -- in this case, it’s the submitAction method.

Important: anything you do within addAction runs within the (cooperative)
server thread. If it blocks or performs a long computation, the server is blocked.
You will therefore want to do non-trivial things either using asynchronous pat-
terns or using deferToThread. The latter is less desirable but also easier, so here’s
how this looks like:

def submitAction(self, ctx, form, data):
return threads.deferToThread(

runRegistrationFor, data["ivoid"]
).addCallback(self._renderResponse
).addErrback(self._renderErrors)

def _renderResponse(self, result):
do something to render a success message (or return Redirect)
return self

252

http://docs.g-vo.org/DaCHS/templating.html

def _renderErrors(self, failure):
do something to render an error message, e.g., from
failure.getErrorMessage()

return self

The embedding RD is available in the custom pages’s global namespace as RD.
Thus, the standard pattern for creating a read only table is:

with api.getTableConn() as conn: table =

api.TableForDef(RD.getById("my_table"), connection=conn)

If you need write access, you would write:

with api.getWritableAdminConn() as conn:

table = api.TableForDef(RD.getById("my_table"), connection=conn)

The RD attribute is not avalailable during module import. This is a bit annoying
if you want to load resources from an RD-dependent place; this, in particular,
applies to importing dependent modules. To provide a workaround, DaCHS calls
a method initModule(**kwargs) after loading the module. You should accept
arbitrary keyword arguments here so you code doesn’t fail if we find we want to
give initModule some further information.

The common case of importing a module from some RD-dependent place thus
becomes:

from gavo import utils

def initModule(**kwargs):
global oai2datacite
modName = RD.getAbsPath("doitransfrom/oai2datacite")

oai2datacite, _ = utils.loadPythonModule(modName)

Manufacturing Spectra
TODO: Update this for Datalink

253

Making SDM Tables

Compared to images, the formats situation with spectra is a mess. Therefore,
in all likelihood, you will need some sort of conversion service to VOTables
compliant to the spectral data model. DaCHS has a facility built in to support
you with doing this on the fly, which means you only need to keep a single set
of files around while letting users obtain the data in some format convenient to
them. The tutorial contains examples on how to generate metadata records for
such additional formats.

First, you will have to define the "instance table", i.e., a table definition that
will contain a DC-internal representation of the spectrum according to the data
model. There’s a mixin for that:

<table id="spectrum">
<mixin ssaTable="hcdtest">//ssap#sdm-instance</mixin>

</table>

In addition to adding lots and lots of params, the mixin also defines two columns,
spectral and flux; these have units and ucds as taken from the SSA metadata.
You can add additional columns (e.g., a flux error depending the the spectral
coordinate) as requried.

The actual spectral instances can be built by sdmCores and delivered through
DaCHS’ product interface. Note, however, that clients supporting getData
wouldn’t need to do this. You’ll still have to define the data item defined below.

sdmCores, while potentially useful with common services, are intended to be
used by the product renderer for dcc product table paths. They contain a data
item that must yield a primary table that is basically sdm compliant. Most of
this is done by the //ssap#feedSSAToSDM apply proc, but obviously you need
to yield the spectral/flux pairs (plus potentially more stuff like errors, etc, if your
spectrum table has more columns. This comes from the data item’s grammar,
which probably must always be an embedded grammar, since its sourceToken
is an SSA row in a dictionary. Here’s an example:

<sdmCore queriedTable="hcdtest" id="mksdm">
<data id="getdata">

<embeddedGrammar>
<iterator>

<code>
labels = ("spectral", "flux")
relPath = self.sourceToken["accref"].split("?")[-1]
with self.grammar.rd.openRes(relPath) as inF:

for ln in inF:
yield dict(zip(labels,ln.split()))

254

</code>
</iterator>

</embeddedGrammar>
<make table="spectrum">

<parmaker>
<apply procDef="//ssap#feedSSAToSDM"/>

</parmaker>
</make>

</data>

</sdmCore>

Note: spectral, flux, and possibly further items coming out of the iterator must
be in the units units promised by the SSA metadata (fluxSI, spectralSI). Dec-
larations to this effect are generated by the //ssap#sdm-instance mixin for the
spectral and flux columns.

The sdmCores are always combined with the sdm renderer. It passes an accref
into the core that gets turned into an row from queried table; this must be an
"ssa" table (i.e., right now something that mixes in //ssap#hcd). This row is the
input to the embedded data descriptor. Hence, this has no sources element, and
you must have either a custom or embedded grammar to deal with this input.

Echelle Spectra
Echelle spectrographs "fold" a spectrum into several orders which may be deliv-
ered in several independent mappings from spectral to flux coordinate. In this
split form, they pose some extra problems, dealt with in an extra system RD,
//echelle. For merged Echelle spectra, just use the standard SSA framework.

Table

Echelle spectra have additional metadata that should end up in their SSA meta-
data table – these are things like the number of orders, the minimum and max-
imum (Echelle) order, and the like. To pull these columns into your metadata
table, use the ssacols stream, for example like this:

<table id="ordersmeta" onDisk="True" adql="True">
<meta name="description">SSA metadata for split-order

Flash/Heros Echelle spectra</meta>
<mixin

[...]
statSpectError="0.05"
spectralResolution="2.5e-11"

>//ssap#hcd</mixin>
<mixin

calibLevel="1">//obscore#publishSSAPHCD</mixin>
<column name="localKey" type="text"

255

ucd="meta.id"
tablehead="Key"
description="Local observation key."
verbLevel="1"/>

<STREAM source="//echelle#ssacols"/>

</table>

Supporting getData
DaCHS still has support the now-abandoned 2012 getData specification by
Demleitner and Skoda. If you think you still want this, contact the authors;
meanwhile, you really should be using datalink for whatever you think you need
getData for.

Adapting Obscore
You may want extra, locally-defined columns in your obscore tables. To support
this, there are three hooks in obscore that you can exploit. To fill these hooks,
use userconfig.rd (TODO: more documentation on that as we use it more;
meanwhile: get a template from SVN and put it into GAVO_ROOT/etc). It
helps to have a brief look at the //obscore RD to get an idea where these hooks
go.

Within the template userconfig.rd, there are already three STREAMs with ids
starting with obscore.; these are referenced from within the system //obscore

RD. Here’s an somewhat more elaborate example:

<STREAM id="obscore-extracolumns">
<column name="fill_factor"

description="Fill factor of the SED"
verbLevel="20"/>

</STREAM>

<STREAM id="obscore-extrapars">
<mixinPar name="fillFactor"

description="The SED’s fill factor">NULL</mixinPar>
</STREAM>

<STREAM id="obscore-extraevents">
<property name="obscoreClause" cumulate="True">

,
CAST(\\\\fillFactor AS real) AS fill_factor,

</property>

</STREAM>

(to be on the safe side: there need to be four backslashes in front of fillFactor;
this is just a backslash doubly-escaped. Sorry about this).

The way this is used in an actual mixin would be like this:

256

http://svn.ari.uni-heidelberg.de/svn/gavo/python/trunk/gavo/resources/inputs/__system__/userconfig.rd

<table id="specs" onDisk="True">
<mixin ...>//ssap#hcd</mixin>
<mixin

... (all the usual parameters)
fillFactor="0.3">//obscore#publishSSAPHCD</mixin>

</table>

What’s going on here? Well, obscore-extracolumns is easy – this material is
directly inserted into the definition of the obscore view (see the table with id
ObsCore within the //obscore RD). You could abuse it to insert other stuff than
columns but probably should not (current exception: you probably need to fix
the viewStatement in //obscore to include sufficient columns; we’re trying to
figure out a better solution).

The tricky part is obscore-extraevents. This goes into the
//obscore#_publishCommon STREAM and ends up in all the publish mixins
in obscore. Again, you could insert mixinPars and similar at this point, but
the only thing you really must do is add lines to the big SQL fragment in the
obscoreClause property that the mixin leaves in the table. This is what is made
into the table’s contribution to the big obscore union. Just follow the example
above and, in particular, always CAST to the type you ave in the metadata,
since individual tables might have NULLs in the values, and you do not want
misguided attempts of postgres to do type inference then.

If you actually must know why you need to double-escape fillFactor and what
the magic with the cumulate="True" is, ask.

Finally, obscore-extrapars directly goes into a core component of obscore, one
that all the various publish mixins there use. Hence, all of them grow your
functionality. That is also why it is important to give defaults (i.e., element
content) to all mixinPars you give in this way – without them, all those other
publish mixins would fail.

If you change %#obscore-extracolumns, you will need to re-import all obscore-
published tables (actually, importing the metadata using gavo imp -m should
do). There currently is no automatic way to traverse the file system, and you
will probably have to first unpublish all existing tables by connecting to the
database and running delete from ivoa._obscoresources. If obscore adaption
proves a popular feature, we’ll make all this a bit smoother.

Writing Custom Grammars
A custom grammar simply is a python module located within
a resource directory defining a row iterator class derived from
gavo.grammars.customgrammar.CustomRowIterator; this class must be
called RowIterator. You want to override the _iterRows method. It will have

257

to yield row dictionaries, i.e., dictionaries mapping string keys to something
(preferably strings, but you will usually get away with returning complete values
even without fancy rowmakers).

So, a custom grammar module could look like this:

from gavo.grammars.customgrammar import CustomRowIterator

class RowIterator(CustomRowIterator):
def _iterRows(self):

for i in xrange(10000):

yield {’index’: i, ’square’: i**2}

Do not override magic methods, since you may lose row filters, sourceFields,
and the like if you do. An exception is the constructor. If you must, you can
override it, but you must call the parent constructor, like this:

class RowIterator(CustomRowIterator):
def __init__(self, grammar, sourceToken, sourceRow=None):

CustomRowIterator.__init__(self, grammar, sourceToken, sourceRow)

<your code>

The sourceToken, in general, will be a file name, unless you call makeData
manually and forceSource something else.

A row iterator will be instanciated for each source processed. Thus, you should
usually not perform expensive operations in the constructor unless they depend
on sourceToken. In general, you should rather define a function makeDat-
aPack in the module. Whatever is returned by this function is available as
self.grammar.dataPack in the row iterator.

The function receives an instance of the the customGrammar as an argument.
This means you can access the resource descriptor and properties of the gram-
mar. As an example of how this could be used, consider this RD fragment:

<table id="defTable">
...

</table>

<customGrammar module="res/grammar">
<property name="targetTable">defTable</property>

</customGrammar>

Then you could have the following in res/grammar.py:

258

def makeDataPack(grammar):

return grammar.rd.getById(grammar.getProperty("targetTable"))

and access the table in the row iterator.

Also look into EmbeddedGrammar, which may be a more convenient way to
achieve the same thing.

A fairly complex example for a custom grammar is a provisional Skyglow gram-
mar .

Dispatching Grammars

With normal grammars, all rows are fed to all rowmakers of all makes within
a data object. The rowmakers can then decide to not process a given row by
raising IgnoreThisRow or using the trigger mechanism. However, when filling
complex data models with potentially dozens of tables, this becomes highly
inefficient.

When you write your own grammars, you can to better. Instead of just yielding
a row from _iterRows, you yield a pair of a role (as specified in the role attribute
of a make element) and the row. The machinery will then pass the row only to
the feeder for the table in the corresponding make.

Currently, the only way to define such a dispatching grammar is to use a custom
grammar or an embedded grammar. For these, just change your _iterRows

and say isDispatching="True" in the customGrammar element. If you implement
getParameters, you can return either pairs of role and row or just the row; in the
latter case, the row will be broadcast to all parmakers.

Special care needs to be taken when a dispatching grammar parses products,
because the product table is fed by a special make inserted from the products
mixin. This make of course doesn’t see the rows you are yielding from your
dispatching grammar. This means that without further action, your files will
not end up the the product table at all. In turn, getproducts will return 404s
instead of your products.

To fix this, you need to explicitely yield the rows destined for the products table
with a products role, from within your grammar. Where the grammar yield
rows for the table with metadata (i.e., rows that actually contain the fields
with prodtblAccref, prodtblPath, etc), yield to the products table, too, like this:
yield ("products", newRow).

259

http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/lightmeter/res/skyglowgrammar.py
http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/lightmeter/res/skyglowgrammar.py

Functions Available for Row Makers
In principle, you can use arbitrary python expressions in var, map and proc
elements of row makers. In particular, the namespace in which these expressions
are executed contains math, os, re, time, and datetime modules as well as
gavo.base, gavo.utils, and gavo.coords.

However, much of the time you will get by using the following functions that
are immediately accessible in the namespace:

TAItoTT(tai) returns TDT for a (datetime.datetime) TAI.

TTtoTAI(tdt) returns TAI for a (datetime.datetime) TDT.

bYearToDateTime(bYear) returns a datetime.datetime instance for a frac-
tional Besselian year.
This uses the formula given by Lieske, J.H., A&A 73, 282 (1979).

computeMean(val1, val2) returns the mean value between two values.
Beware: Integer division done here for the benefit of datetime calculations.

>>> computeMean(1.,3)
2.0
>>> computeMean(datetime.datetime(2000, 10, 13),
... datetime.datetime(2000, 10, 12))

datetime.datetime(2000, 10, 12, 12, 0)

dateTimeToJYear(dt) returns a fractional (julian) year for a date-
time.datetime instance.

dateTimeToJdn(dt) returns a julian day number (including fractionals) from
a datetime instance.

dateTimeToMJD(dt) returns a modified julian date for a datetime instance.

dmsToDeg(dmsAngle, sepChar=None) returns the degree minutes
seconds-specified dmsAngle as a float in degrees.

>>> "%3.8f"%dmsToDeg("45 30.6")
’45.51000000’
>>> "%3.8f"%dmsToDeg("45:30.6", ":")
’45.51000000’
>>> "%3.8f"%dmsToDeg("-45 30 7.6")
’-45.50211111’
>>> dmsToDeg("junk")
Traceback (most recent call last):

ValueError: Invalid dms value with sepChar None: ’junk’

260

genLimitKeys(inputKey) yields _MAX and _MIN inputKeys from a single
input key.
This also tries to sensibly fix descriptions and ucds. This is mainly for
datalink metaMakers; condDescs may use a similar thing, but that’s not
exposed to RDs.

getAccrefFromStandardPubDID(pubdid, authBase=u’ivo://org.gavo.dc/~?’)
returns an accref from a standard DaCHS PubDID.
This is basically the inverse of getStandardPubDID. It will raise ValueEr-
rors if pubdid doesn’t start with ivo://<authority>/~?.
The function does not check if the remaining characters are a valid accref,
much less whether it can be resolved.

getFileStem(fPath) returns the file stem of a file path.
The base name is what remains if you take the base name and split off
extensions. The extension here starts with the last dot in the file name,
except up to one of some common compression extensions (.gz, .xz, .bz2,
.Z, .z) is stripped off the end if present before determining the extension.

>>> getFileStem("/foo/bar/baz.x.y")
’baz.x’
>>> getFileStem("/foo/bar/baz.x.gz")
’baz’
>>> getFileStem("/foo/bar/baz")

’baz’

getFlatName(accref) returns a unix-compatible file name for an access refer-
ence.
The file name will not contain terrible characters, let alone slashes. This
is used to, e.g., keep all previews in one directory.

getHTTPPar(inputData, parser, single=False, forceUnique=False)
returns a parsed value from inputData.
inputData may be

∙ None -- the function will return None
∙ an empty list -- the function will return None
∙ a value other than a list -- as if it were a list of length 1
∙ a list -- the function will return a list of parsed items

This is of conveniently and robustly pulling out data from stuff coming
out of inputKeys without multiplicity.
If you pass single=True, you’ll get exactly one value (or None). The value
will be the first one from a sequence.

261

If you pass forceUnique=True, a ValueError will be raised if inputData is
longer than one.

getInputsRelativePath(absPath, liberalChars=True) returns absath rela-
tive to the DaCHS inputsDir.
If absPath is not below inputsDir, a ValueError results. On liberalChars,
see getRelativePath.
In rowmakers and rowfilters, you’ll usually use the macro inputRela-
tivePath that inserts the appropriate code.

getQueryMeta() returns a query meta object from somewhere up the stack.
This is for row makers running within a service. This can be used to, e.g.,
enforce match limits by writing getQueryMeta()["dbLimit"].

getStandardPubDID(path) returns the standard DaCHS PubDID for path.
The publisher dataset identifier (PubDID) is important in protocols like
SSAP and obscore. If you use this function, the PubDID will be your
authority, the path compontent ~, and the inputs-relative path of the
input file as the parameter.
path can be relative, in which case it is interpreted relative to the DaCHS
inputsDir.
You can define your PubDIDs in a different way, but you’d then need
to provide a custom descriptorGenerator to datalink services (and might
need other tricks). If your data comes from plain files, use this function.
In a rowmaker, you’ll usually use the standardPubDID macro.

hmsToDeg(hms, sepChar=None) returns the time angle (h m s.decimals)
as a float in degrees.

>>> "%3.8f"%hmsToDeg("22 23 23.3")
’335.84708333’
>>> "%3.8f"%hmsToDeg("22:23:23.3", ":")
’335.84708333’
>>> "%3.8f"%hmsToDeg("222323.3", "")
’335.84708333’
>>> hmsToDeg("junk")
Traceback (most recent call last):

ValueError: Invalid time with sepChar None: ’junk’

iterSimpleText(f) iterates over physLineNumber, line in f with some usual
conventions for simple data files.
You should use this function to read from simple configuration and/or
table files that don’t warrant a full-blown grammar/rowmaker combo.
The intended use is somewhat like this:

262

with open(rd.getAbsPath("res/mymeta")) as f:
for lineNumber, content in iterSimpleText(f):

try:
...

except Exception, exc:

sys.stderr.write("Bad input line %s: %s"%(lineNumber, exc))

The grammar rules are, specifically:

∙ leading and trailing whitespace is stripped
∙ empty lines are ignored
∙ lines beginning with a hash are ignored
∙ lines ending with a backslash are joined with the following line; to

have intervening whitespace, have a blank in front of the backslash.

jdnToDateTime(jd) returns a datetime.datetime instance for a julian day
number.

killBlanks(literal) returns the string literal with all blanks removed.
This is useful when numbers are formatted with blanks thrown in.
Nones are passed through.

lastSourceElements(path, numElements) returns a path made up from the
last numElements items in path.

makeAbsoluteURL(path) returns a fully qualified URL for a rooted local part.

makeProductLink(key, withHost=True) returns the URL at which a prod-
uct can be retrieved.
key can be an accref string or an RAccref

makeSitePath(path) returns a rooted local part for a server-internal URL.
uri itself needs to be server-absolute; a leading slash is recommended for
clarity but not mandatory.

makeTimestamp(date, time) makes a datetime instance from a date and a
time.

mjdToDateTime(mjd) returns a datetime.datetime instance for a modified
julian day number.
Beware: This loses a couple of significant digits due to transformation to
jd.

parseAngle(literal, format, sepChar=None) converts the various forms an-
gles might be encountered to degrees.

263

format is one of hms, dms, fracHour. For sexagesimal/time angles, you
can pass a sepChar (default: split at blanks) that lets you specify what
separates hours/degrees, minutes, and seconds.

>>> str(parseAngle("23 59 59.95", "hms"))
’359.999791667’
>>> "%10.5f"%parseAngle("-20:31:05.12", "dms", sepChar=":")
’ -20.51809’
>>> "%010.6f"%parseAngle("21.0209556", "fracHour")

’315.314334’

parseBooleanLiteral(literal) returns a python boolean from some string.
Boolean literals are strings like True, false, on, Off, yes, No in some
capitalization.

parseDate(literal, format=’%Y-%m-%d’) returns a datetime.date object
of literal parsed according to the strptime-similar format.
The function understands the special dateFormat !!julianEp (stuff like
1980.89).

parseFloat(literal) returns a float from a literal, or None if literal is None or
an empty string.
Temporarily, this includes a hack to work around a bug in psycopg2.

>>> parseFloat(" 5e9 ")
5000000000.0
>>> parseFloat(None)
>>> parseFloat(" ")
>>> parseFloat("wobbadobba")
Traceback (most recent call last):

ValueError: could not convert string to float: wobbadobba

parseISODT(literal) returns a datetime object for a ISO time literal.
There’s no real timezone support yet, but we accept and ignore various
ways of specifying UTC.

>>> parseISODT("1998-12-14")
datetime.datetime(1998, 12, 14, 0, 0)
>>> parseISODT("1998-12-14T13:30:12")
datetime.datetime(1998, 12, 14, 13, 30, 12)
>>> parseISODT("1998-12-14T13:30:12Z")
datetime.datetime(1998, 12, 14, 13, 30, 12)
>>> parseISODT("1998-12-14T13:30:12.224Z")
datetime.datetime(1998, 12, 14, 13, 30, 12, 224000)
>>> parseISODT("19981214T133012Z")
datetime.datetime(1998, 12, 14, 13, 30, 12)
>>> parseISODT("19981214T133012+00:00")
datetime.datetime(1998, 12, 14, 13, 30, 12)
>>> parseISODT("junk")
Traceback (most recent call last):

264

ValueError: Bad ISO datetime literal: junk

parseInt(literal) returns an int from a literal, or None if literal is None or an
empty string.

>>> parseInt("32")
32
>>> parseInt("")

>>> parseInt(None)

parseTime(literal, format=’%H:%M:%S’) returns a datetime.timedelta
object for literal parsed according to format.
For format, you can the magic values !!secondsSinceMidnight, !!decimal-
Hours or a strptime-like spec using the H, M, and S codes.

>>> parseTime("89930", "!!secondsSinceMidnight")
datetime.timedelta(1, 3530)
>>> parseTime("23.4", "!!decimalHours")
datetime.timedelta(0, 84240)
>>> parseTime("3.4:5", "%H.%M:%S")
datetime.timedelta(0, 11045)
>>> parseTime("20:04", "%H:%M")

datetime.timedelta(0, 72240)

parseTimestamp(literal, format=’%Y-%m-%dT%H:%M:%S’) returns
a datetime.datetime object of literal parsed according to the strptime-
similar format.
A ValueError is raised if literal doesn’t match format (actually, a parse
with essentially DALI-standard ISO representation is always tried)

parseWithNull(literal, baseParser, nullLiteral=<Undefined>, default=None, checker=None)
returns default if literal is nullLiteral, else baseParser(literal).
If checker is non-None, it must be a callable returning True if its argument
is a null value.

quoteProductKey(key) returns key as getproduct URL-part.
if key is a string, it is quoted as a naked accref so it’s usable as the path
part of an URL. If it’s an RAccref, it is just stringified. The result is
something that can be used after getproduct in URLs in any case.

requireValue(val, fieldName) returns val unless it is None, in which case a
ValidationError for fieldName will be raised.

scale(val, factor, offset=0) returns val*factor+offset if val is not None, None
otherwise.
This is when you want to manipulate a numeric value that may be NULL.
It is a somewhat safer alternative to using nullExcs with scaled values.

265

toMJD(literal) returns a modified julian date made from some datetime rep-
resentation.
Valid representations include:

∙ MJD (a float smaller than 1e6)
∙ JD (a float larger than 1e6)
∙ datetime.datetime instances
∙ ISO time strings.

Scripting
As much as it is desirable to describe tables in a declarative manner, there
are quite a few cases in which some imperative code helps a lot during table
building or teardown. Resource descriptors let you embed such imperative code
using script elements. These are children of the make elements since they are
exclusively executed when actually importing into a table.

Currently, you can enter scripts in SQL and python, which may be called at
various phases during the import.

SQL scripts

In SQL scripts, you separate statements with semicolons. Note that no state-
ments in an SQL script may fail since that will invalidate the transaction. This
is a serious limitation since you must not commit or begin transactions in SQL
scripts as long as Postgres does not support nested transactions.

You can use table macros in the SQL scripts to parametrize them; the most
useful among those probably is \curtable containing the fully qualified name of
the table being processed.

Python scripts

Python scripts can be indented by a constant amount.

The table object currently processed is accessible as table. In particular, you
can use this to issue queries using table.query(query, arguments) (parallel to
dbapi.execute) and to delete rows using table.deleteMatching(condition, pars).
The current RD is accessible as table.rd, so you can access items from the RD
as table.rd.getById("some_id"), and the recommended way to read stuff from
the resource directory is table.rd.openRes("res/some_file).

Some types of scripts may have additional names available. Currently, new-
Source and sourceDone have the name sourceToken – which is the sourceToken
as passed to the grammar.

266

Script types

The type of a script corresponds to the event triggering its execution. The
following types are defined right now:

∙ preImport -- before anything is written to the table

∙ preIndex -- before the indices on the table are built

∙ postCreation -- after the table (incl. indices) is finished

∙ beforeDrop -- when the table is about to be dropped

∙ newSource -- every time a new source is started

∙ sourceDone -- every time a source has been processed

Note that preImport, preIndex, and postCreation scripts are not executed when
a table is updated, in particular, in data items with updating="True". The only
way to run scripts in such circumstances is to use newSource and sourceDone
scripts.

Examples

This snippet sets a flag when importing some source (in this case, that’s an RD,
so we can access sourceToken.sourceId:

<script type="newSource" lang="python" id="markDeleted">
table.query("UPDATE %s SET deleted=True"

" WHERE sourceRD=%%(sourceRD)s"%id,
{"sourceRD": sourceToken.sourceId})

</script>

This is a hacked way of ensuring some sort of referential integrity: When a table
containing "products" is dropped, the corresponding entries in the products table
are deleted:

<script type="beforeDrop" lang="SQL" name="clean product table">
DELETE FROM products WHERE sourceTable=’\curtable’

</script>

Note that this is actually quite hazardous because if the table is dropped in
any way not using the make element in the RD, this will not be executed. It’s
usually much smarter to tell the database to do the housekeeping. Rules are
typically set in postCreation scripts:

267

<script type="postCreation" lang="SQL">
CREATE OR REPLACE RULE cleanupProducts AS

ON DELETE TO \curtable DO ALSO
DELETE FROM products WHERE key=OLD.accref

</script>

The decision if such arrangements are make before the import, before the in-
dexing or after the table is finished needs to be made based on the script’s
purpose.

Another use for scripts is SQL function definition:

<script type="postCreation" lang="SQL" name="Define USNOB matcher">
CREATE OR REPLACE FUNCTION usnob_getmatch(alpha double precision,

delta double precision, windowSecs float
) RETURNS SETOF usnob.data AS $$
DECLARE

rec RECORD;
BEGIN

FOR rec IN (SELECT * FROM usnob.data WHERE
q3c_join(alpha, delta, raj2000, dej2000, windowSecs/3600.))

LOOP
RETURN NEXT rec;

END LOOP;
END;
$$ LANGUAGE plpgsql;

</script>

You can also load data, most usefully in preIndex scripts (although beforeImport
would work as well here):

<script type="preIndex" lang="SQL" name="create USNOB-PPMX crossmatch">
SET work_mem=1000000;
INSERT INTO usnob.ppmxcross (

SELECT q3c_ang2ipix(raj2000, dej2000) AS ipix, p.localid
FROM

ppmx.data AS p,
usnob.data AS u

WHERE q3c_join(p.alphaFloat, p.deltaFloat,
u.raj2000, u.dej2000, 1.5/3600.))

</script>

Embedded Documentation
ReStructuredText

Text needing some amount of markup within DaCHS is almost always input
as ReStructuredText (RST). The source versions of the DaCHS documentation

268

http://docs.g-vo.org/DaCHS/

give examples for such markup, and DaCHS users should at least briefly skim
the ReStructuredText primer.

DaCHS contains some RST extensions. Some of them are discussed in Examples
Endpoints. Generally useful extensions include:

bibcode This text role formats the argument as a link into ADS when rendered
as HTML. For technical reasons, this currently ignores the configured ADS
mirror and always uses the Heidelberg one. Complain if this bugs you. To
use it, you’d write:

See also :bibcode:‘2011AJ....142....3H‘.

Examples Endpoints

TBD

System Tables
DaCHS uses a number of tables to manage services and implement protocols.
Operators should not normally be concerned with them, but sometimes having
a glimpse into them helps with debugging.

If you find yourself wanting to change these tables’ content, please post to
dachs-support first describing what you’re trying to do. There should really be
commands that do what you want, and it’s relatively easy to introduce subtle
problems by manipulating system tables without going through those.

Having said that, here’s a list of the system tables together with brief descrip-
tions of their role and the columns contained. Note that your installation might
not have all of those; some only appear after a gavo imp of the RD they are
defined in -- which you of course only should do if you know you want to enable
the functionality provided.

The documentation given here is extracted from the resource descriptors, which,
again, you can read in source using gavo admin dumpDF //<rd-name>.

dc.authors

Defined in //services

A table that contains the (slightly processed) creator.name metadata from pub-
lished services. It is used by the shipped templates of the root pages.

Manipulate through gavo pub; to remove entries from this table, remove the
publication element of the service or table in question and re-run gavo pub on
the resource descriptor.

269

http://docutils.sourceforge.net/docs/user/rst/quickstart.html
http://lists.g-vo.org/cgi-bin/mailman/listinfo/dachs-support

sourceRD (text) -- Id of the RD (essentially, the inputsDir-relative path, with
the .rd cut off).

resId (text) -- Id of the service, data or table within the RD. Together with the
RD id, this uniquely identifies the resource to DaCHS.

author (unicode) -- An author name taken from creator.name; DaCHS assumes
this to be in the form Last, I.

dc.datalinkjobs

Defined in //datalink

A table managing datalink jobs submitted asynchronously (the dlasync renderer)

jobId (text) -- Internal id of the job. At the same time, uwsDir-relative name
of the job directory.

phase (text) -- The state of the job.

executionDuration (integer) -- Job time limit

destructionTime (timestamp) -- Time at which the job, including ancillary
data, will be deleted

owner (text) -- Submitter of the job, if verified

parameters (text) -- Pickled representation of the parameters (except uploads)

runId (text) -- User-chosen run Id

startTime (timestamp) -- UTC job execution started

endTime (timestamp) -- UTC job execution finished

error (text) -- some suitable representation an error that has occurred while
executing the job (null means no error information has been logged)

pid (integer) -- A unix pid to kill to make the job stop

dc.groups

Defined in //users

Assignment of users to groups.

Conceptually, each user has an associated group of the same name. A user
always is a member of her group. Other users can be added to that group,
essentially as in the classic Unix model.

270

Manipulate this table through gavo admin addtogroup and gavo admin delfrom-
group.

username (text) -- Name of the user belonging to the group

groupname (text) -- Name of the group

dc.interfaces

Defined in //services

A table that has "interfaces", i.e., actual URLs under which services are acces-
sible. This is in a separate table, as services can have multiple interfaces (e.g.,
SCS and form).

Manipulate through gavo pub; to remove entries from this table, remove the
publication element of the service or table in question and re-run gavo pub on
the resource descriptor.

sourceRD (text) -- Id of the RD (essentially, the inputsDir-relative path, with
the .rd cut off).

resId (text) -- Id of the service, data or table within the RD. Together with the
RD id, this uniquely identifies the resource to DaCHS.

accessURL (text) -- The URL this service with the given renderer can be ac-
cessed under.

referenceURL (text) -- The URL this interface is explained at. In DaCHS, as
in VOResource, this column should actually be in dc.resources, but we
don’t consider that wart bad enough to risk any breakage.

browseable (boolean) -- True if this interface can sensibly be operated with
a web browser (e.g., form, but not scs.xml; browseable service interfaces
are eligible for being put below the ’Use this service with your browser’
button on the service info page.

renderer (text) -- The renderer used for this interface.

dc.metastore

Defined in //dc_tables

A table for storing all kinds of key-value pairs. Key starting with an underscore
are for use by user RDs.

271

Only one pair per key is supported, newer keys overwrite older ones.

Currently, this is only used for schemaversion, the version of the DaCHS system
tables as used by gavo upgrade to figure out what to change. gavo upgrade
manages this.

From your code, you can use base.getDBMeta(key) and
base.setDBMeta(connection, key, value) to put persistent, string-valued
metadata in here; if you use this, would you tell us your use case?

"key" (text) -- A key; everything that starts with an underscore is user defined.

"value" (text) -- A value; no serialization format is defined here, but you are
encouraged to use python literals for non-strings.

dc.products

Defined in //products

The products table keeps information on "products", i.e. datasets delivered to
the users.

It is normally fed through the products#define rowfilter and a mixin like prod-
ucts#table (or other mixins using it like siap#pgs or ssap#mixc).

/getproducts inspects this table before handing out data to enforce embargoes
and similar restrictions, and this is also where it figures out where to go for
previews.

accref (text) -- Access key for the data

owner (text) -- Owner of the data

embargo (date) -- Date the data will become/became public

mime (text) -- MIME type of the file served

accessPath (text) -- Inputs-relative filesystem path to the file

sourceTable (text) -- Name of table containing metadata

preview (text) -- Location of a preview; this can be NULL if no preview is
available, ’AUTO’ if DaCHS is supposed to try and make its own previews
based on MIME guessing, or a file name, or an URL.

datalink (text) -- A fully qualified URL of a datalink document for this dataset.
This is to allow the global datalink service (sitting on the ~ resource and
used by obscore) to forward datalink requests globally.

preview_mime (text) -- MIME type of a preview (if any)

272

dc.res_dependencies

Defined in //services

An RD-level map of dependencies, meaning that before generating resource
records from rd, requisite should be imported.

This is managed by gavo pub and used in the OAI-PMH interface.

rd (text) -- id of an RD

prereq (text) -- id of an RD that should be imported before records from rd
are generated.

sourceRD (text) -- id of the RD that introduced this dependency

dc.resources

Defined in //services

The table of published "resources" (i.e., services, tables, data collections) within
this data center. There are separate tables of the interfaces these resources have,
their authors, subjects, and the sets they belong to.

Manipulate through gavo pub; to remove entries from this table, remove the
publication element of the service or table in question and re-run gavo pub on
the resource descriptor.

sourceRD (text) -- Id of the RD (essentially, the inputsDir-relative path, with
the .rd cut off).

resId (text) -- Id of the service, data or table within the RD. Together with the
RD id, this uniquely identifies the resource to DaCHS.

shortName (text) -- The content of the service’s shortName metadata. This
is not currently used by the root pages delivered with DaCHS, so this
column essentially is ignored.

title (text) -- The content of the service’s title metadata (gavo pub will fall
back to the resource’s title if the service doesn’t have a description of its
own).

description (text) -- The content of the service’s description metadata (gavo
pub will fall back to the resource’s description if the service doesn’t have
a description of its own).

273

owner (text) -- NULL for public services, otherwise whatever is in limitTo.
The root pages delivered with DaCHS put a [P] in front of services with
a non-NULL owner.

dateUpdated (timestamp) -- Date of last update on the resource itself (i.e.,
run of gavo imp).

recTimestamp (timestamp) -- UTC of gavo publish run on the source RD

deleted (boolean) -- True if the service is deleted. On deletion, services are
not removed from the resources and sets tables so the OAI-PMH service
can notify incremental harvesters that a resource is gone.

ivoid (text) -- The full ivo-id of the resource. This is usually
ivo://auth/rdid/frag but may be overridden (you should probably not
create records for which you are not authority, but we do not enforce that
any more).

authors (text) -- Resource authors in source sequence

dc.resources_join

Defined in //services

A join of resources, interfaces, and sets used internally.

sourceRD (text) -- Id of the RD (essentially, the inputsDir-relative path, with
the .rd cut off).

resId (text) -- Id of the service, data or table within the RD. Together with the
RD id, this uniquely identifies the resource to DaCHS.

title (text) -- The content of the service’s title metadata (gavo pub will fall
back to the resource’s title if the service doesn’t have a description of its
own).

description (text) -- The content of the service’s description metadata (gavo
pub will fall back to the resource’s description if the service doesn’t have
a description of its own).

owner (text) -- NULL for public services, otherwise whatever is in limitTo.
The root pages delivered with DaCHS put a [P] in front of services with
a non-NULL owner.

dateUpdated (timestamp) -- Date of last update on the resource itself (i.e.,
run of gavo imp).

recTimestamp (timestamp) -- UTC of gavo publish run on the source RD

274

deleted (boolean) -- True if the service is deleted. On deletion, services are
not removed from the resources and sets tables so the OAI-PMH service
can notify incremental harvesters that a resource is gone.

accessURL (text) -- The URL this service with the given renderer can be ac-
cessed under.

referenceURL (text) -- The URL this interface is explained at. In DaCHS, as
in VOResource, this column should actually be in dc.resources, but we
don’t consider that wart bad enough to risk any breakage.

browseable (boolean) -- True if this interface can sensibly be operated with
a web browser (e.g., form, but not scs.xml; browseable service interfaces
are eligible for being put below the ’Use this service with your browser’
button on the service info page.

renderer (text) -- The renderer used for this interface.

setName (text) -- Name of an OAI set.

ivoid (text) -- The full ivo-id of the resource. This is usually
ivo://auth/rdid/frag but may be overridden (you should probably not
create records for which you are not authority, but we do not enforce that
any more).

dc.sets

Defined in //services

A table that contains set membership of published resources. For DaCHS, the
sets ivo_managed ("publish to the VO") and local ("show on a generated root
page" if using one of the shipped root pages) have a special role.

Manipulate through gavo pub; to remove entries from this table, remove the
publication element of the service or table in question and re-run gavo pub on
the resource descriptor.

sourceRD (text) -- Id of the RD (essentially, the inputsDir-relative path, with
the .rd cut off).

resId (text) -- Id of the service, data or table within the RD. Together with the
RD id, this uniquely identifies the resource to DaCHS.

setName (text) -- Name of an OAI set.

renderer (text) -- The renderer used for the publication belonging to this set.
Typically, protocol renderers (e.g., scs.xml) will be used in VO publica-
tions, whereas form and friends might be both in local and ivo_managed

275

deleted (boolean) -- True if the service is deleted. On deletion, services are
not removed from the resources and sets tables so the OAI-PMH service
can notify incremental harvesters that a resource is gone.

dc.subjects

Defined in //services

A table that contains the subject metadata for published services. It is used by
the shipped templates of the root pages ("...by subject").

Manipulate through gavo pub; to remove entries from this table, remove the
publication element of the service or table in question and re-run gavo pub on
the resource descriptor.

sourceRD (text) -- Id of the RD (essentially, the inputsDir-relative path, with
the .rd cut off).

resId (text) -- Id of the service, data or table within the RD. Together with the
RD id, this uniquely identifies the resource to DaCHS.

subject (text) -- A subject heading. Terms should ideally come from the IVOA
thesaurus.

dc.subjects_join

Defined in //services

A join of resources, subjects, and sets used internally.

subject (text) -- A subject heading. Terms should ideally come from the IVOA
thesaurus.

sourceRD (text) -- Id of the RD (essentially, the inputsDir-relative path, with
the .rd cut off).

resId (text) -- Id of the service, data or table within the RD. Together with the
RD id, this uniquely identifies the resource to DaCHS.

title (text) -- The content of the service’s title metadata (gavo pub will fall
back to the resource’s title if the service doesn’t have a description of its
own).

owner (text) -- NULL for public services, otherwise whatever is in limitTo.
The root pages delivered with DaCHS put a [P] in front of services with
a non-NULL owner.

276

accessURL (text) -- The URL this service with the given renderer can be ac-
cessed under.

referenceURL (text) -- The URL this interface is explained at. In DaCHS, as
in VOResource, this column should actually be in dc.resources, but we
don’t consider that wart bad enough to risk any breakage.

browseable (boolean) -- True if this interface can sensibly be operated with
a web browser (e.g., form, but not scs.xml; browseable service interfaces
are eligible for being put below the ’Use this service with your browser’
button on the service info page.

setName (text) -- Name of an OAI set.

ivoid (text) -- The full ivo-id of the resource. This is usually
ivo://auth/rdid/frag but may be overridden (you should probably not
create records for which you are not authority, but we do not enforce that
any more).

dc.tablemeta

Defined in //dc_tables

A table mapping table names and schemas to the resource descriptors they come
from and whether they are open to ADQL queries.

This is used wherever DaCHS needs to go from a database name to the resource
description, e.g., when generating tableinfo.

The table is maintained through gavo imp; to force things out of here, there’s
gavo drop (for RDs; use -f if the RD is gone or meoved away) or gavo purge
(for single tables).

tableName (text) -- Fully qualified table name

sourceRD (text) -- Id of the resource descriptor containing the table’s definition

tableDesc (text) -- Description of the table content

resDesc (text) -- Description of the resource this table is part of

adql (boolean) -- True if this table may be accessed using ADQL

277

dc.users

Defined in //users

Users known to the data center, together with their credentials.

Right now, DaCHS only supports user/password. Note that passwords are cur-
rently stored in cleartext, so do discourage your users from using valuable pass-
words here (whether you explain to them that DaCHS so far only provides "mild
security" is up to you).

Manipulate this table through gavo admin adduser, gavo admin deluser, and
gavo admin listusers.

username (text) -- Name of the user.

password (text) -- Password in clear text.

remarks (text) -- Free text mainly intended to explain what the user is supposed
to be/do

ivoa.ObsCore

Defined in //obscore

The IVOA-defined obscore table, containing generic metadata for datasets
within this datacenter.

dataproduct_type (text) -- High level scientific classification of the data prod-
uct, taken from an enumeration

dataproduct_subtype (text) -- Data product specific type

calib_level (smallint) -- Amount of data processing that has been applied to
the data

obs_collection (text) -- Name of a data collection (e.g., project name) this
data belongs to

obs_id (text) -- Unique identifier for an observation

obs_title (text) -- Free-from title of the data set

obs_publisher_did (text) -- Dataset identifier assigned by the publisher.

obs_creator_did (text) -- Dataset identifier assigned by the creator.

access_url (text) -- The URL at which to obtain the data set.

278

access_format (text) -- MIME type of the resource at access_url

access_estsize (bigint) -- Estimated size of data product

target_name (text) -- Object a targeted observation targeted

target_class (text) -- Class of the target object (star, QSO, ...; use
Simbad object classification http://simbad.u-strasbg.fr/simbad/sim- dis-
play?data=otypes if at all possible)

s_ra (double precision) -- RA of (center of) observation, ICRS

s_dec (double precision) -- Dec of (center of) observation, ICRS

s_fov (double precision) -- Approximate spatial extent for the region covered
by the observation

s_region (spoly) -- Region covered by the observation, as a polygon

s_resolution (double precision) -- Best spatial resolution within the data set

t_min (double precision) -- Lower bound of times represented in the data set,
as MJD

t_max (double precision) -- Upper bound of times represented in the data set,
as MJD

t_exptime (real) -- Total exporure time

t_resolution (real) -- Minimal significant time interval along the time axis

em_min (double precision) -- Minimal wavelength represented within the data
set

em_max (double precision) -- Maximal wavelength represented within the data
set

em_res_power (double precision) -- Spectral resolving power delta
lambda/lamda

o_ucd (text) -- UCD for the product’s observable

pol_states (text) -- List of polarization states in the data set

facility_name (text) -- Name of the facility at which data was taken

instrument_name (text) -- Name of the instrument that produced the data

279

http://simbad.u-strasbg.fr/simbad/sim

ivoa._obscoresources

Defined in //obscore

This table contains the SQL fragments that make up this installation’s
ivoa.obscore view. Whenever a participating table is re-made, the view def-
inition is renewed with a statement made up of a union of all sqlFragments
present in this table.

Manipulate this table through gavo imp on tables that have an obscore mixin,
or by dropping RDs or purging tables that are part of obscore.

tableName (text) --

sqlFragment (text) --

ivoa.emptyobscore

Defined in //obscore

An empty table having all columns of the obscore table. Useful internally, and
sometimes for tricky queries.

dataproduct_type (text) -- High level scientific classification of the data prod-
uct, taken from an enumeration

dataproduct_subtype (text) -- Data product specific type

calib_level (smallint) -- Amount of data processing that has been applied to
the data

obs_collection (text) -- Name of a data collection (e.g., project name) this
data belongs to

obs_id (text) -- Unique identifier for an observation

obs_title (text) -- Free-from title of the data set

obs_publisher_did (text) -- Dataset identifier assigned by the publisher.

obs_creator_did (text) -- Dataset identifier assigned by the creator.

access_url (text) -- The URL at which to obtain the data set.

access_format (text) -- MIME type of the resource at access_url

access_estsize (bigint) -- Estimated size of data product

280

target_name (text) -- Object a targeted observation targeted

target_class (text) -- Class of the target object (star, QSO, ...; use
Simbad object classification http://simbad.u-strasbg.fr/simbad/sim- dis-
play?data=otypes if at all possible)

s_ra (double precision) -- RA of (center of) observation, ICRS

s_dec (double precision) -- Dec of (center of) observation, ICRS

s_fov (double precision) -- Approximate spatial extent for the region covered
by the observation

s_region (spoly) -- Region covered by the observation, as a polygon

s_resolution (double precision) -- Best spatial resolution within the data set

t_min (double precision) -- Lower bound of times represented in the data set,
as MJD

t_max (double precision) -- Upper bound of times represented in the data set,
as MJD

t_exptime (real) -- Total exporure time

t_resolution (real) -- Minimal significant time interval along the time axis

em_min (double precision) -- Minimal wavelength represented within the data
set

em_max (double precision) -- Maximal wavelength represented within the data
set

em_res_power (double precision) -- Spectral resolving power delta
lambda/lamda

o_ucd (text) -- UCD for the product’s observable

pol_states (text) -- List of polarization states in the data set

facility_name (text) -- Name of the facility at which data was taken

instrument_name (text) -- Name of the instrument that produced the data

281

http://simbad.u-strasbg.fr/simbad/sim

tap_schema.columns

Defined in //tap

Columns in tables available for ADQL querying.

table_name (text) -- Fully qualified table name

column_name (text) -- Column name

description (unicode) -- Brief description of column

unit (text) -- Unit in VO standard format

ucd (text) -- UCD of column if any

utype (text) -- Utype of column if any

datatype (text) -- ADQL datatype

"size" (integer) -- Length of variable length datatypes

principal (integer) -- Is column principal?

indexed (integer) -- Is there an index on this column?

std (integer) -- Is this a standard column?

sourceRD (text) -- Id of the originating rd (local information)

tap_schema.groups

Defined in //tap

Columns that are part of groups within tables available for ADQL querying.

table_name (text) -- Fully qualified table name

column_name (text) -- Name of a column belonging to the group

column_utype (text) -- utype the column withing the group

group_name (text) -- Name of the group

group_utype (text) -- utype of the group

sourceRD (text) -- Id of the originating rd (local information)

282

tap_schema.key_columns

Defined in //tap

Columns participating in foreign key relationships between tables available for
ADQL querying.

key_id (text) -- Key identifier from TAP_SCHEMA.keys

from_column (text) -- Key column name in the from table

target_column (text) -- Key column in the target table

sourceRD (text) -- Id of the originating rd (local information)

tap_schema.keys

Defined in //tap

Foreign key relationships between tables available for ADQL querying.

key_id (text) -- Unique key identifier

from_table (text) -- Fully qualified table name

target_table (text) -- Fully qualified table name

description (text) -- Description of this key

utype (text) -- Utype of this key

sourceRD (text) -- Id of the originating rd (local information)

tap_schema.schemas

Defined in //tap

Schmemas containing tables available for ADQL querying.

schema_name (text) -- Fully qualified schema name

description (text) -- Brief description of the schema

utype (text) -- utype if schema corresponds to a data model

283

tap_schema.supportedmodels

Defined in //tap

Standard data models supported by this service.

This is a non-standard tap_schema table used by DaCHS in the creation of reg-
istry records. It is manipulated through gavo imp on tables with supportsModel
and supportsModelURI properties.

sourceRD (text) -- Id of the originating rd (local information)

dmname (text) -- Human-readable name of the data model

dmivorn (text) -- IVORN of the data model

tap_schema.tables

Defined in //tap

Tables available for ADQL querying.

schema_name (text) -- Fully qualified schema name

table_name (text) -- Fully qualified table name

table_type (text) -- One of: table, view

description (text) -- Brief description of the table

utype (text) -- utype if the table corresponds to a data model

sourceRD (text) -- Id of the originating rd (local information)

tap_schema.tapjobs

Defined in //tap

A non-standard (and not tap-accessible) table used for managing asynchronous
TAP jobs. It is manipulated through TAP job creation and destruction internally.
Under very special circumstances, operators can use the gavo admin cleantap
command to purge jobs from this table.

Note that such jobs have corresponding directories in $STATEDIR/uwsjobs,
which will be orphaned if this table is manipulated through SQL.

284

jobId (text) -- Internal id of the job. At the same time, uwsDir-relative name
of the job directory.

phase (text) -- The state of the job.

executionDuration (integer) -- Job time limit

destructionTime (timestamp) -- Time at which the job, including ancillary
data, will be deleted

owner (text) -- Submitter of the job, if verified

parameters (text) -- Pickled representation of the parameters (except uploads)

runId (text) -- User-chosen run Id

startTime (timestamp) -- UTC job execution started

endTime (timestamp) -- UTC job execution finished

error (text) -- some suitable representation an error that has occurred while
executing the job (null means no error information has been logged)

pid (integer) -- A unix pid to kill to make the job stop

uws.userjobs

Defined in //uws

The jobs table for user-defined UWS jobs. As the jobs can come from all kinds
of services, this must encode the jobClass (as the id of the originating service).

jobId (text) -- Internal id of the job. At the same time, uwsDir-relative name
of the job directory.

phase (text) -- The state of the job.

executionDuration (integer) -- Job time limit

destructionTime (timestamp) -- Time at which the job, including ancillary
data, will be deleted

owner (text) -- Submitter of the job, if verified

parameters (text) -- Pickled representation of the parameters (except uploads)

runId (text) -- User-chosen run Id

startTime (timestamp) -- UTC job execution started

285

endTime (timestamp) -- UTC job execution finished

error (text) -- some suitable representation an error that has occurred while
executing the job (null means no error information has been logged)

pid (integer) -- A unix pid to kill to make the job stop

jobClass (text) -- Key for the job class to use here. This is, as an implemen-
tation detail, simply the cross-id of the service processing this.

Bibliography

[RMI] Hanisch, R., et al, "Resource Metadata for the Virtual Observatory",
http://www.ivoa.net/Documents/latest/RM.html

286

http://www.ivoa.net/Documents/latest/RM.html

[VOTSTC] Demleitner, M., Ochsenbein, F., McDowell, J., Rots, A.: "Referenc-
ing STC in VOTable", Version 2.0, http://www.ivoa.net/Documents/Notes/
VOTableSTC/20100618/NOTE-VOTableSTC-2.0-20100618.pdf

[DALI] Dowler, P, et al, "Data Access Layer Interface Version 1.0", http://ivoa.
net/documents/DALI/20131129/

287

http://www.ivoa.net/Documents/Notes/VOTableSTC/20100618/NOTE-VOTableSTC-2.0-20100618.pdf
http://www.ivoa.net/Documents/Notes/VOTableSTC/20100618/NOTE-VOTableSTC-2.0-20100618.pdf
http://ivoa.net/documents/DALI/20131129/
http://ivoa.net/documents/DALI/20131129/

	Contents
	Resource Descriptor Element Reference
	Element apply
	Element bind
	Element column
	Element columnRef
	Element columnRef (view)
	Element condDesc
	Element customDF
	Element customRF
	Element data
	Element EDIT
	Element events
	Element execute
	Element foreignKey
	Element group
	Element httpUpload
	Element ignoreOn
	Element ignoreSources
	Element index
	Element inputDD
	Element inputKey
	Element job
	Element lateEvents
	Element macDef
	Element make
	Element map
	Element mixinDef
	Element mixinPar
	Element option
	Element outputField
	Element outputTable
	Element par
	Element param
	Element paramRef
	Element phraseMaker
	Element procDef
	Element processEarly
	Element processLate
	Element PRUNE
	Element publish (data)
	Element publish
	Element regSuite
	Element regTest
	Element resource
	Element resRec
	Element rowmaker
	Element script
	Element service
	Element setup
	Element simpleView
	Element sources
	Element stc
	Element table
	Element url
	Element values
	Element var

	Active Tags
	Element FEED
	Element LFEED
	Element LOOP
	Element NXSTREAM
	Element STREAM

	Grammars Available
	Element binaryGrammar
	Element binaryRecordDef
	Element cdfHeaderGrammar
	Element columnGrammar
	Element contextGrammar
	Element csvGrammar
	Element customGrammar
	Element dictlistGrammar
	Element directGrammar
	Element embeddedGrammar
	Element fitsProdGrammar
	Element fitsTableGrammar
	Element freeREGrammar
	Element iterator
	Element keyValueGrammar
	Element mapKeys
	Element mySQLDumpGrammar
	Element nullGrammar
	Element pdsGrammar
	Element reGrammar
	Element rowfilter
	Element rowsetGrammar
	Element sourceFields
	Element voTableGrammar

	Cores Available
	Element adqlCore
	Element computedCore
	Element coreProc
	Element customCore
	Element dataFormatter
	Element dataFunction
	Element datalinkCore
	Element dbCore
	Element debugCore
	Element descriptorGenerator
	Element editCore
	Element fancyQueryCore
	Element fixedQueryCore
	Element inputTable
	Element metaMaker
	Element nullCore
	Element productCore
	Element pythonCore
	Element registryCore
	Element scsCore
	Element sdmCore
	Element siapCutoutCore
	Element ssapCore
	Element ssapProcessCore
	Element uploadCore

	Predefined Macros
	Macro RSTcc0
	Macro RSTccby
	Macro RSTservicelink
	Macro RSTtable
	Macro colNames
	Macro curtable
	Macro decapitalize
	Macro dlMetaURI
	Macro docField
	Macro fullDLMetaURL
	Macro fullDLURL
	Macro getConfig
	Macro getParam
	Macro inputRelativePath
	Macro inputSize
	Macro internallink
	Macro lastSourceElements
	Macro magicEmpty
	Macro metaString
	Macro nameForUCD
	Macro nameForUCDs
	Macro property
	Macro qName
	Macro quote
	Macro rdId
	Macro rdIdDotted
	Macro rootlessPath
	Macro rowsMade
	Macro rowsProcessed
	Macro schema
	Macro sourceDate
	Macro srcstem
	Macro standardPreviewPath
	Macro standardPubDID
	Macro tablename
	Macro tablesForTAP
	Macro test
	Macro today
	Macro upper
	Macro urlquote

	Mixins
	The //epntap#table Mixin
	The //obscore#publish Mixin
	The //obscore#publishSIAP Mixin
	The //obscore#publishSSAPHCD Mixin
	The //products#table Mixin
	The //scs#positions Mixin
	The //scs#q3cindex Mixin
	The //siap#bbox Mixin
	The //siap#pgs Mixin
	The //slap#basic Mixin
	The //ssap#hcd Mixin
	The //ssap#mixc Mixin
	The //ssap#sdm-instance Mixin

	Triggers
	Element and
	Element keyIs
	Element keyMissing
	Element keyNull
	Element keyPresent
	Element not

	Renderers Available
	The admin Renderer
	The api Renderer
	The availability Renderer
	The capabilities Renderer
	The custom Renderer
	The dlasync Renderer
	The dlget Renderer
	The dlmeta Renderer
	The docform Renderer
	The examples Renderer
	The external Renderer
	The fixed Renderer
	The form Renderer
	The get Renderer
	The info Renderer
	The logout Renderer
	The mimg.jpeg Renderer
	The mupload Renderer
	The pubreg.xml Renderer
	The qp Renderer
	The rdinfo Renderer
	The scs.xml Renderer
	The siap.xml Renderer
	The siap2.xml Renderer
	The slap.xml Renderer
	The soap Renderer
	The ssap.xml Renderer
	The static Renderer
	The tableMetadata Renderer
	The tableinfo Renderer
	The tablenote Renderer
	The tap Renderer
	The upload Renderer
	The uws.xml Renderer

	Predefined Procedures
	Procedures available for rowmaker apply
	Procedures available for grammar rowfilters
	Procedures available for datalink cores

	Predefined Streams
	Datalink-related Streams
	Other Streams

	Metadata
	Meta inheritance
	Meta formats
	Macros in Meta Elements
	Typed Meta Elements
	Metadata in Standard Renderers
	RMI-Style Metadata
	Coverage Metadata
	Meta Stream Format

	Display Hints
	Building Service Interfaces
	Table-based cores
	Formatting the output

	Regression Testing
	Introduction
	Writing Regression Tests
	RegTest URLs
	RegTest Tests
	Running Tests
	Examples

	Datalink Cores
	Descriptors Generators
	Meta Makers
	Metadata Error Messages
	Data Functions
	Data Formatters
	Registry Matters
	Datalink and Obscore
	Datalink Examples

	Product Previews
	Writing Custom Cores
	Defining a Custom Core
	Giving the Core Functionality
	Errors
	Database Options
	Inheriting from TableBasedCore
	Python Cores instead of Custom Cores

	Custom UWSes
	Custom Pages
	Manufacturing Spectra
	Making SDM Tables

	Echelle Spectra
	Table

	Supporting getData
	Adapting Obscore
	Writing Custom Grammars
	Dispatching Grammars

	Functions Available for Row Makers
	Scripting
	SQL scripts
	Python scripts
	Script types
	Examples

	Embedded Documentation
	ReStructuredText
	Examples Endpoints

	System Tables
	dc.authors
	dc.datalinkjobs
	dc.groups
	dc.interfaces
	dc.metastore
	dc.products
	dc.res_dependencies
	dc.resources
	dc.resources_join
	dc.sets
	dc.subjects
	dc.subjects_join
	dc.tablemeta
	dc.users
	ivoa.ObsCore
	ivoa._obscoresources
	ivoa.emptyobscore
	tap_schema.columns
	tap_schema.groups
	tap_schema.key_columns
	tap_schema.keys
	tap_schema.schemas
	tap_schema.supportedmodels
	tap_schema.tables
	tap_schema.tapjobs
	uws.userjobs

	Bibliography

