GAVO DaCHS: DirectGrammars and Boosters

Author: Markus Demleitner
Email: gavo®ari.uni-heidelberg.de

The import architecture of DaCHS with grammars and rowmakers producing
material suitable for SQL INSERT statements is designed to be flexible and as
declarative as possible. Its one big drawback is that once you have to ingest
more than a couple of million rows (or less rows with hundreds of columns) it
tends to become slow, leading to ingestion times in excess of hours or even days.

To remedy this, DaCHS supports "boosters", programs that bypass both
DaCHS' intenstines and SQL INSERT statements, both of which are responsible
for quite some overhead. Boosters, in constrast, use C code to fetch data and
output binary COPY material to be dumped into the table. The net result are
very significant speedups; a factor of 100 is easily attainable.

Of course, there are several downsides. One is that you have to write (and
probably debug) C code, and schema changes will become fairly painful, re-
quiring surgery in the C code (a notable exception are direct grammars reading
from FITS binary tables; the latter contain sufficient metadata to allow fully
automatic code generation in simple cases). Also, direct grammars can only
operate on single tables; data descriptors containing more than one make cannot
have direct grammars. As direct grammars talk to the database engine fairly
directly, the table definition must have onDisk="true".

Rowmakers given in make elements sitting behind direct grammars are ignored;
any manipulations to the data coming in must be made within the C code. It is
not an error for rowmakers to be present, though. This lets you test and debug
with normal DaCHS grammars and then use a booster for the whole (potentially
big) dataset by just commenting out the conventional grammar and commenting
in the direct grammar. This is especially useful for table compares (e.g., using
gavo info) to verify that the booster does the same thing as the conventional
grammar/rowmaker combo.

A quick start on using boosters:

mailto:gavo@ari.uni-heidelberg.de

1) Replace your data element’s grammar with the direct grammar spec,
which would look somewhat like this:

<directGrammar id="fits" type="fits" cBooster="res/boosterfunc.c"/>
2) Generate the booster:
gavo mkboost your/rd#fits > res/boosterfunc.c
3) Edit res/boosterfunc.c (may be optional for fits boosters)
4) Import your data:
gavo imp your/rd
In the directGrammar element, the path in the cBooster attribute is interpreted

relative to the RD'’s resdir. The type argument says rougly what kind of source
you're parsing from. Values allowed here include:

e col (the default) — parse from stuff conventionally handled by a

columnGrammar

e bin — parse from data that has fixed-length binary records (this is stuff
that a binaryGrammar would grok)

e split — parse from files that have fields separated by some constant se-
quence of character (conventionally, these can be parsed by a reGrammar)

e fits — parse from FITS binary tables (that's what a fitsTableGrammar can
read).

The mkboost subcommand receives a reference of to the directGrammar element
—that is, the RD id, a hash, and the XML id of the grammar — as an argument.

Booster source code

Once you've generated the booster source, you're free to change it in whatever
way you fancy. On schema updates, unfortunately, you'll have to merge in
changes manually, as we've not found a sensible and general way to preserve
arbitrary source changes when (re-)generating a booster. If you have a creative
idea how better to separate generated and hand-made code, we're certainly
interested. The way things are now, if you change the schema, you can re-run
gavo mkboost but have to merge any changes manually.

The code generated starts somewhat like this:

http://docs.g-vo.org/DaCHS/ref.html#element-directgrammar

#include <math.h>
#include <string.h>
#include "boosterskel.h"

#define QUERY_N_PARS 33

enum outputFields {

fi_localid, /* Identifier, text */
fi_pmra, /* PM (alpha), real */
fi_pmde, /* PM (delta), real */

The definition of QUERY_N_PARS (which is the number of columns in the table) is
essential and must remain in this form, as the function building the booster greps
it out of the source code to communicate this value to the booster boilerplate;
this, however, means that you're free to change the concrete number if the
number of table columns changes in the source file (you'd have to adjust the
outputFields as well; this is typcially going to be a cut-and-paste job from a
repeated run of gavo mkboost). Again, QUERY_N_PARS must always be equal to the
number of columns in the target table.

The code continues with an enumeration mapping symbolic names to the indices
of the corresponding columns in the target table; the names are simple fi__ and
the field destination lowercased. If you only use these names to access fields,
cutting and pasting on later schema changes should be fairly painless and safe.

While you shouldn’t need to change any of this, you in general have to change
the getTuple function. What it looks like strongly depends on the sort of booster
you're generating for; this includes the prototype.

What's common is that getTuple needs to return a Field array. All boosters
declare the return value like this:

static Field vals[QUERY_N_PARS];

— it needs to be static as a pointer to it is returned from the function; don't
rely on anything in there to be stable across function calls, though, as the
serialization to COPY material might mess around in that memory. The name
vals is expected by, e.g., the F macro and must therefore not be changed.

Field is defined as follows:

typedef struct Field_s {
valType type;
int length; /* ignored for anything but VAL_TEXT */
union {
char *c_ptr;

double c_double;
float c_float;
int32_t c_int32;
int8_t c_int8;
} val;
} Field;

where type is one of:

typedef enum valType_e {
VAL_NULL,
VAL_BOOL,
VAL_CHAR,
VAL_SHORT,
VAL_INT,
VAL_BIGINT,
VAL_FLOAT,
VAL_DOUBLE,
VAL_TEXT,
VAL_JDATE, /* a julian year ("J2000.0"); this is stored as a simple double */
VAL_DATE, /* date expressed as a time_t */
VAL_DATETIME, /* date and time expressed as a time_t */

} valType;

JDATE is a julian day number to be dumped as a date (rather than a datetime).
For other ways to represent dates and datetimes, see below.

You can, and frequently will, fill the stuff by hand. There are, however, a couple
of functions that take care of some standard situations:

® void linearTransform(Field *field, double offset, double factor) -
changes field in place to offset+factorxoldvalue. Handles NULL
correctly, silently does nothing for anything non-numeric

® void parseFloatWithMagicNULL(char *src, Field *field, int start, int
len, char *magicVal) -- parses a float from src[start:start+len] into
field, writing NULL when magicVal is found in the field.

® void parseDouble(char *src, Field *field, int start, int len) -- parses
a double from srclstart:start+len] into field, writing NULL if it's whites-
pace only.

® void parselnt(char *src, Field *field, int start, int lem) -- parses a
32-bit int from srclstart:start+len] into field.

® void parseShort(char *src, Field *field, int start, int len) -- parses a
16-bit int from srclstart:start+len] into field.

void parseBlankBoolean(char *src, Field #field, int srcInd) -- parses a
boolean such that field becomes true when src[srcInd] is nonempty.

void parseBigint(char *src, Field *field, int start, int lemn) -- parses
a 64-bit int from srclstart:start+len] into field.

void parseString(char *src, Field *field, int start, int len, char
xspace) -- copies len bytes starting at start from src into space (you are
responsible for allocating that; usually, a static buffer should do, since
the postgres input is generated before the next input line is parsed) and
stuffs the whole thing into field.

void parseChar(char *src, Field *field, int srcInd) -- guess.
MAKE_NULL(fi) -- makes fi NULL

MAKE_DOUBLE(fi, value) -- make fi a double with value
MAKE_BIGINT(fi, value) -- make fi a double with value
MAKE_FLOAT(fi, value) --

MAKE_SHORT(fi, value) --

MAKE_CHAR(fi, value) --

MAKE_JDATE(fi, value) --

MAKE_TEXT(fi, value) -- note that you must manage the memory of value
yourself. In particular, it must not be automatic memory of getTuple, since
that will not be valid when the tuple actually is built. Most commonly,
you'll be using a static buffer here.

MAKE_CHAR_NULL(fi, value, nullvalue) -- makes fi a char with value unless
value==nullvalue; in that case, fi becomes a NULL

double mjdToJYear(mjd) -- returns a julian year for mjd
AS2DEG(field) -- turns a field value in arcsecs to degrees

MAS2DEG(field) -- turns a field value in milli-arcsecs to degrees

Of course, you can also manually copy or delimit data and use fieldscanf as
documented in split boosters

Boosters are linked together with boosterskel.c and must include boosterskel.h.
If you're interested what these things do (or want to fix bugs, or whatever), you
can get the files using:

gavo admin dumpDF src/boosterskel.c # or .h

Line-based boosters

These are boosters that read from a text file, line by line. Currently, the max-
imum line length is set to 4000 (INPUT_LINE_MAX in boosterskel.c). It is up to
the parsing function to split and digest this text line.

Col boosters
For col boosters, the getTuple function looks somewhat like this:

Field *getTuple(char *inputLine)
{
static Field vals[QUERY_N_PARS];

parseWhatever (inputLine, F(fi_localid), start, len);
parseFloat (inputLine, F(fi_pmra), start, len);
parseFloat (inputLine, F(fi_pmde), start, len);

parseFloat (inputLine, F(fi_raerr), start, len);

Here, it's your job to fill out start and len (at least; start is zero-based). gavo
mkboost inserts parseXXX function calls according to the table metadata, which
should be what you want in general. Add scaling or other processing as required.

Split boosters

When the input data comes as xSV (e.g., values separated by vertical bars,
commas, or tabs), give a splitChar and set the type attribute to split in the

directGrammar.

This then creates a source like:

char *curCont = strtok(inputLine, "\t");
fieldscanf (curCont, fi_objid, VAL_INT_64);
curCont = strtok(NULL, "\t");

fieldscanf (curCont, fi_run, VAL_SHORT);

etc. Thus, the input line is parsed using strtok, and each value is parsed using
the fieldscanf function. This function takes the string containing the literal in
the first argument, the field index in the second, and finally the type specifier.
If the data comes in the sequence of the table columns, the generated source
might just work.

Warning: C’s standard strtok function merges adjacent separators, i.e.,
foolbar||baz would just yield three tokens, foo, bar, and baz. With astro-
nomical data, this is typically not what you want. Therefore, the generated
booster function will have a line like:

#define strtok strtok_u

Delete it in case that you need the POSIX strtok behaviour. This would in
particular apply if you have whitespace separated data with a variable number
of blanks (which, however, would suggest that you're really looking at material
for a col booster).

Bin boosters

When you get binary data of fixed record length, set the recordsize attribute
on the DirectGrammar element:

<directGrammar type="bin" recordSize="300"...

Note that a recordSize larger than INPUT_LINE_MAX will cause a buffer overflow.

You are mainly on your own in terms of segmentation, but for entering values,
you can use the MAKE_x discussed above.

For these in particular, use the the portable type specifiers for integral types,
viz., int8_t, int16_t, int32_t, and int64_t and these names with a u in front.

In particular with binary boosters, it is essential you always properly cast what
you read, e.g.,:

MAKE_DOUBLE(fi_dej2000, -90+*(int32_t*) (line+4)/1e6); /* SPD */

when a declination is given as mas of south polar distance.

FITS boosters

These read from FITS binary tables and are really a somewhat special beast. To
build one of those, DaCHS inspects the first file matched by the parent data's
sources element (which also means these won't work outside of a data element).
DaCHS expects each table column to have a match (i.e., after lowercasing the
name in the FITS table) in the FITS table. FITS table column without a match
in the database table are ignored.

FITS binary tables are organized by columns rather than by rows, bearing witness
to their FORTRAN heritage. The way the boosters are currently generated, all
these columns are completely read into memory, which means you cannot ingest
FITS binary tables that do not fit into your machine’s memory. Fixing this would
be fairly straightforward (patches are welcome, but we'll also fix this if you ask
for it).

FITS boostes can automatically map column names for you. “<mapKeys>
raj2000:RA, dej2000:DEC </mapKeys> will map column named RA in your
sourcefile to column named raj2000 in your database table and analoguosly for
DEC. If you don’t do this, only column names from your DB table will be read
and imported.

system-message

WARN|NG/2 in booster.rstx, line 333
Inline literal start-string without end-string.

If you need to postprocess the items, we recommend you do that again in the
getTuple function (note how that gets passed the row index) for maintainability,
rather than directly after reading the rows.

Attention: The system will not warn you if the type of a column in the table is
not compatible with what you have in the database. If it is, the program will
probably silently dump garbage into the db, though if you're lucky it'll crash.
This is almost on purpose. It will let you do manual type conversions like, for
example, making a 64 bit integer from a string as follows:

if (nulls([18] [rowIndex]) {
MAKE_NULL(fi_ppmx1) ;
} else {
parseBigint (((char*x) (data[18])) [rowIndex], F(fi_ppmx1l), 0, 19);
}

return vals;

(we could admittedly warn you if this kind of thing becomes necessary, and we'll
gladly accept patches for that).

Filling in data manually

The F(index) macro lets you access the field info directly. So, you could enter
a fixed-length piece of memory into fi_magic like this:

static char bufForMagic[8];

memcpy (bufForMagic, inputLine+20, 8);
F(fi_magic)->type = VAL_TEXT;
F(fi_magic)->val.c_ptr = bufForMagic;

F(fi_magic)->length = 8;

Having static buffers in getTuple is usually ok since the COPY input is generated
before getTuple is called again.

It is quite common to have to handle null values. In the example above, this
could look like this if a NULL for magic were signified by a F in inputLine[19]:

static char bufForMagic[8];
if (inputLine[19]=="F’) {
F(fi_magic)->type = VAL_NULL;

} else {
memcpy (bufForMagic, inputLine+20, 8);

Skipping a record

If you need to skip a record, do:
longjmp(ignoreRecord)

in getTuple. That works independently of the booster type.

Dates and times

The boosters treat "normal" dates and datetimes as struct tm‘‘s. If you
need a larger range, use °‘‘VAL_JDATE, which lets you store julian dates in floats.

Julian dates are serialized to dates rather than datetimes.

To parse VAL_DATE or VAL_DATETIME, you will write something like:
fieldscanf (curCont, fi_date, VAL_DATE, "%Y-%m-%d");

if parsing from date strings. If your input is something weird, figure out a way
to generate a struct tm as defined in time.h. Then write:

struct tm timeParts;
timeParts.tm_sec = 12;

timeParts.tm_year = 1920;
F(fi_dt)->val.time = timeParts;

F(fi_dt).type = VAL_DATETIME;

(or VAL_DATE, as the case may be).

Having said all this, long experience has taught us it's ususally best do have
dates and such in the database as MJD or julian years. You can format those
to I1SO strings (or, really, anything else you want) on output by using display
hints on outpuField or even column itself.

MJDs are just so much easier to handle within ADQL queries. Support for
timestamps, on the other hand, is extremely lousy.

Debugging

The source code generated by gavo mkboost typically is really mean. The pref-
erence is to make it coredump rather than give fancy errors, under the assump-
tion that error messages from the booster would in general help less than the
post-mortem dumps; this of course also means that you should not use direct
grammars to parse from potentially malicious sources unless you substantially
harden the generated code.

To figure out what's wrong if things go wrong, say:

ulimit -c unlimited # bash and friends
gavo imp q
gdb bin/booster core

where # that’s for gdb

This should give you the line where things failed, and of course the full power
of gdb to inspect how that happened.

As a short example, consider a gdb session where the author | forgot to use the
mapKeys in a FITS directGrammar for columns which are filled from the Binary
table. This resulted in a segmentation fault, which made gdb say:

gdb:
Program terminated with signal 11, Segmentation fault.

#0 0x0000000000406cde in getTuple (data=0x7fff592a41a0, nulls=0x7fff592a4250, rowIndex=0)

To figure out where the program crashed, say:

(gdb) where

#0 0x0000000000406cde in getTuple (data=0x7fff592a41a0, nulls=0x7fff592a4250,
rowIndex=0) at func.c:73

#1 0x0000000000407784 in createDumpfile (argc=2, argv=0x7fff592a53c8)
at func.c:296

#2 0x0000000000406bdf in main (argc=2, argv=0x7fff592a53c8)

at boosterskel.c:673

10

In the traceback, you can see the frame you're interested in and go there using
up (or down, if you're too far up):

(gdb) up
#1 0x0000000000407784 in createDumpfile (argc=2, argv=0x7fff592a53c8)
at func.c:296

296 in func.c

Incidentally, you could instruct gdb to use your boosterfunc.c file as the source
file for func.c (that's the temporary name of that file when DaCHS built the
binary in a sandbox). But it's probably as straightforward to just check the
source code in your editor and figure out what variables you're interested in. In
this case, this might be the number of the row where the crash happened (we
are in the main row-reading loop of the booster):

(gdb) print i
$8 =0

Voila, we crashed on the first row already. Let's go back into getTuple to figure
out which column was bad:

(gdb) down
#0 0x0000000000406cde in getTuple (data=0x7fff592a41a0, nulls=0x7fff592a4250,
rowIndex=0) at func.c:73

73 in func.c

Looking up line 73, there's (in this example) an access to nulls[0] [rowIndex].
Could this dereference a null pointer? See for yourself:

(gdb) print nulls[0]
$9 = 0x0

Right — so that's where the trouble starts (in this case, the underlying reason
was a DaCHS bug, as that array should never have been uninitialized).

11

	Booster source code
	Line-based boosters
	Col boosters
	Split boosters

	Bin boosters
	FITS boosters
	Filling in data manually
	Skipping a record
	Dates and times

	Debugging

