
The GAVO VOTable Library

Author: Markus Demleitner
Email: gavo@ari.uni-heidelberg.de

A library to process VOTables using python
Author: Markus Demleitner
Email: gavo@ari.uni-heidelberg.de

Contents

A library to process VOTables using python 1

Introduction . 1

Obtaining the library . 1

Simple parsing . 2

Simple writing . 3

Iterative parsing . 3

Rows objects . 4

stanxml elements . 4

Generating VOTables . 5

Special behaviour . 6

The STC Data Model . 8

1

mailto:gavo@ari.uni-heidelberg.de
mailto:gavo@ari.uni-heidelberg.de

Introduction

This library lets you parse and generate VOTables. These are data contain-
ers as used in the Virtual Observatory and specified in http://www.ivoa.net/
Documents/VOTable/20091130/REC-VOTable-1.2.html

This library supports Version 1.2 VOTables and to some extent earlier versions
as well.

An alternative python library to handle VOTables is included in STSci’s astrolib.

The library has a simplied high-level interface for simple applications and a
low-level streaming interface for advanced use.

Obtaining the library

Current versions of the library are available from DaCHS distribution page. Users
of Debian stable (and similar distributions not too far removed), will want to
pull the library from the data center’s apt archive; see the DaCHS install docs.

This library is part of the GAVO Data Center Helper Suite.

Simple parsing

To parse simple (one-table), moderately sized VOTable, do:

votable.load(source) -> data, metadata

Here, data is a list of records, each of which is a sequence, metadata is a
TableMetadata instance, and source can be a string naming a local file, or it
can be a file-like object. To parse material in a string, use votable.loads.

votable.load only looks at the first TABLE element encountered. If the VOTable
does not contain any tabular data at all (e.g., error messages from various VO
protocols), (None, None) is returned.

Metadata contains is the VOTable.TABLE element the data comes from in its
votTable atttribute. By iterating over the metadata you get the field objects.
For example:

labels = [field.name for field in metadata]

print [dict(zip(labels, row)) for row in data]

There’s a convenience method that does the dictification for you; to iterate over
all rows of a VOTable as dicts, you can say:

2

http://www.ivoa.net/Documents/VOTable/20091130/REC-VOTable-1.2.html
http://www.ivoa.net/Documents/VOTable/20091130/REC-VOTable-1.2.html
http://stsdas.stsci.edu/astrolib/vo/html/intro_table.html
http://vo.ari.uni-heidelberg.de/soft
http://vo.ari.uni-heidelberg.de/docs/DaCHS/install.html#installation

data, metadata = votable.load(source)
for row in metadata.iterDicts(data):

...

If you want to create a numpy record array from that data, you can say:

data, metadata = votable.load(source)

ra = rec.array(data, dtype=votable.makeDtype(metadata))

However, you cannot in general store NULL values in record arrays (as None,
that is), so this code will fail for many tables unless one introduces proper
null values (e.g., nan for floats; for ints, you could ask metadata for the null
value used by the VOTable). Also, record arrays cannot store variable-length
strings, so makeDtype assumes some default length. Pass a defaultStringLength
keyword argument if your strings get truncated (or replace the * in the FIELD

object with whatever actual length you deem sufficient).

Simple writing

You can do some manipulations on data and metadata as returned by
votable.load (in lockstep) and write back the result using votable.save(data,

metadata, destF), where destF is a writable file object. This could look like this:

data, metadata = votable.load("in.vot")
tableDef = metadata.votTable.deepcopy()
tableDef[V.FIELD(name="sum", datatype="double")]
newData = [row+(row[1]+row[2],) for row in data]
with open("res.vot", "w") as f:

votable.save(newData, tableDef, f)

Manipulating the table definitions is not convenient in this library so far. If you
need such functionality, we would probably provide funtions to manipulation
fields and params (or maybe just expose the child lists).

Iterative parsing

Iterative parsing is well suited for streaming applications and is attractive be-
cause the full document need never be completely in RAM at any time. For
many applications, it is a little more clunky to work with, though.

The central function for iterative parsing is parse:

parse(inFile, watchset=[]) -> iterator

3

There also is parseString that takes a string literal instead of a file. inFile may
be anything acceptable to the Elementtree library, so files and file names are ok.

The watchlist gives additional element types you want the iterator to return.
These have to be classes from votable.V (see VOTable elements) By default,
only special votable.Rows objects are returned. More on those below.

You get back stanxml elements with an additional attribute idmap is a dictionary-
like object mapping ids to the elements that have so far been seen. This is
the same object for all items returned, so forward references will eventually
be resolved in this idmap if the input document is valid. For documents with
clashing ids, the behaviour is undefined.

So, if you were interested in the the resource structure of a VOTable, you could
write:

from gavo import votable
from gavo.votable import V

for element in votable.parse(open("in.vot"), watchset=[V.RESOURCE]):
if isinstance(element, V.RESOURCE):

print "Starting new resource: %s"%element.name
else:

print "Discarding %s elements"%len(list(element))

Rows objects

Unless you order something else, parse will yield Rows objects only, one per
TABLE element. Iterate over those to obtain the table rows, deserialized, with
None as NULL. Note that you must exhaust the Rows iterator if you wish to
continue parsing the table. You currently cannot simply skip a table.

The Rows’ tableDefinition attribute contains the VOTable TABLE element that
describes the current data.

To read the first table, do:

rows = votable.parse(open(inFileName)).next()
print rows.tableDefinition.iterChildrenOfType(votable.V.FIELD)
for row in rows:

print row

The tableDefinition also lets you retrieve FIELDs by name using the
getFieldForName(name) -> FIELD method.

4

http://vo.ari.uni-heidelberg.de/docs/DaCHS/apidoc/gavo.votable.model.VOTable-class.html
http://vo.ari.uni-heidelberg.de/docs/DaCHS/apidoc/gavo.votable.tableparser.Rows-class.html

stanxml elements

VOTables are built as stanxml elements; these have the common VOTable at-
tributes as python attributes, i.e., to find the ucd of a FIELD f you would say
f.ucd. To find out what’s where, read the VOTable spec or check the VOTable
elements and look out for class attributes starting with _a_ -- these are turned
into attributes without the prefix.

To access child elements, use any of the following methods:

∙ iterChildren() -- yields all the element’s children in sequence

∙ iterChildrenOfType(stanxmlType) -- yields all the element’s children that
are an instance of stanxmlType (in a python inheritance sense)

∙ makeChildDict() -- returns a dictionary that maps child element names to
sequences of children of this type.

So, to find a FIELD’s description(s), you could say either:

list(f.iterChildrenOfType(V.DESCRIPTION))

or:

f.makeChildDict()["DESCRIPTION"]

The text content of a stanxml node is available in the text_ attribute.

Post-data INFOs

More recent VOTable specifications allow INFO elements after table data. If
you must catch these, things get a bit messier.

To be sure tableDefinition is complete including post-data groups, you need to
let the iterator run once more after exhausting the data. Here’s how to do this
for the first table within a VOTable:

td = None
for rows in votable.parse(inFile):

if td is not None:
break

td = rows.tableDefinition
for row in rows:

doMagic(row)

When you don’t care about possible INFO elements anyway, use the simpler
pattern above.

5

http://www.ivoa.net/Documents/VOTable/
http://vo.ari.uni-heidelberg.de/docs/DaCHS/apidoc/gavo.votable.model.VOTable-class.html
http://vo.ari.uni-heidelberg.de/docs/DaCHS/apidoc/gavo.votable.model.VOTable-class.html

Generating VOTables

Low Level

When creating a VOTable using the low-level interface, you write the VOTable
using DOM elements, using a simple notation gleaned from Nevow Stan. This
looks like this:

from gavo import votable
from gavo.votable import V

vot = V.VOTABLE[
V.INFO(name="generic", value="example)["This is an example"],
V.RESOURCE[

votable.DelayedTable(
V.TABLE[

V.FIELD(name="col1", datatype="char", arraysize="*"),],

rows, V.BINARY)]]

-- square brackets thus denote element membership, round parentheses are used
to set attributes.

The votable.DelayedTable class wraps a defined table and serializes data (rows in
the example) using the structure defined by the first argument into a serialization
defined by its last argument. Currently, you can use V.BINARY or V.TABLEDATA here.
The data itself must come in sequences of python values compatible with your
field definitions.

To write the actual VOTable, use the votable.write(root, outputFile) method.
You can also call the root element’s render() method to obtain the representa-
tion in a string.

High Level

There is a higher-level API to this library as a part of the DaCHS software.
However, absent the mechanisms present there it’s not trivial to come up with
an interface that is both sufficiently expressive and simpler than just writing
down stuff as in the low level API. Numpy arrays we’ll do at some point, and it
helps if you ask us.

Special behaviour

(a.k.a. "Bug and Features")

From the standards document it is not clear if, on parsing, nullvalue comparison
should happen on literals or on parsed values. In this library, we went for literal

6

comparison. This means that, e.g., for unsignedBytes with a null value of 0x10,
a decimal 16 will not be rendered as None.

Values of VOTable type bits are always returned as integers, possibly very long
ones.

Arraysize specifications are ignored when parsing VOTables in TABLEDATA
encoding. The resulting lists will have the length given by the input. When
writing, arraysizes are mostly enforced by clipping or padding with null values.
They currently are not for strings and bit arrays.

One consequence of this is that with arraysize="*", a NULL array will be an
empty tag in TABLEDATA, but with arraysize=’n’ it will be n nullvalues.

Bit arrays in TABLEDATA encoding may have interspersed whitespace or not.
When encoding, no whitespace is generated since this seems the intention of
the spec.

All VOTables generated by this library are in UTF-8.

unicodeChar in BINARY encodes to and from UTF-16 rather than UCS-2 since
UCS-2 is deprecated (and actually unsupported by python’s codecs). However,
this will fail for fixed-size strings containing characters outside of the BMP since
it is impossible to know how many bytes an unknown string will occupy in UTF-
16. So, characters for which UCS-2 and UTF-16 are different will fail. These
probably are rare, but we should figure out some way to handle this.

This will only make a difference for characters outside of the Basic Multilingual
Plane. Hope you’ll never encounter any.

Nullvalue declarations for booleans are always ignored. Nullvalue declarations
for floats, doubles, and their complex counterparts are ignored when writing
(i.e., we will always use NaN as a nullvalue; anything else would be highly
doubtful anyway since float coming from representations in binary and decimal
are tricky to compare at best).

When serializing bit fields in BINARY and there are too many bits for the
number of bytes available, the most significant bits are cut off. If there are too
few, zeroes are added on the left.

Post-data INFOs are not currently accessible when doing iterative parsing.

In BINARY serialization, fixed-length strings (both char and unicodeChar) are
always padded right with blanks, whether or not a nullvalue is defined.

For char and unicodeChar arrays, nullvalues are supposed to refer to the entire
array value. This is done since probably no library will support individual NULL

7

characters (whatever that is) within strings, and this if we encounter such a
thing, this probably is the meaning. Don’t write something like that, though.

When deserializing variable multidimensional arrays from BINARY encoded
streams, the length is assumed to be the total number of elements in the array
rather than the number of rows. This may change when I find some VOTable
using this in the wild.

Multidimensional arrays are returned as a single sequence on parsing, i.e. an
arraysize of 5x7 is interpreted exactly like 35. This is not going to change. If
you must, you can use the unravel|Array(arraysize, seq) function to reshape
the list and get a nested structure of lists, where arraysize has the form of the
VOTable FIELD attribute. If seq does not match the dimensions described by
arraysize, the behavior is undefined (right now, we return short rows, but we
may later raise exceptions).

On writing, you must flatten your multidimensional arrays before passing them
to the library. This may change if people actually use it. The behavior then will
be to accept as input whatever unravelArray returns. You can guess that the
author considers multidimensional arrays a particularly gross misfeature within
the misfeature VOTable arrays.

The ref attribute on TABLEs currently is not interpreted. Due to the way the
library works, this means that such tables cannot be parsed.

The STC Data Model

To include STC information, you can just build the necessary GROUPs,
PARAMs and FIELDrefs yourself.

Alternatively, you can install GAVO’s STC library and build ASTs in some way
(most likely from STC-S) and use the modelgroups module to include the in-
formation. This would look like this:

from votable import modelgroups, DelayedTable
[...]
ast = ast.parseQSTCS(’Time TT "date" Position ICRS "ra" "de")
fields = [

V.FIELD(name="date", datatype="char", arraysize="*"),
V.FIELD(name="ra", datatype="float"),
V.FIELD(name="de", datatype="float"),]

table = V.TABLE[fields,

modelgroups.marshal(ast, getIDFor)]

XXX TODO: Add id management.

8

	A library to process VOTables using python
	Contents
	Introduction
	Obtaining the library
	Simple parsing
	Simple writing
	Iterative parsing
	Rows objects
	stanxml elements
	Generating VOTables
	Special behaviour
	The STC Data Model

