
GAVO DaCHS Tutorial

Author: Markus Demleitner
Email: gavo@ari.uni-heidelberg.de
Date: 2016-03-16

Contents

Invoking DaCHS 4

Building a Catalog Service 5

Quick start . 5

The anatomy of the RD . 8

Defining Tables . 10

Parsing Input Data . 14

Mapping data . 17

Indices and Mixins . 20

Cores and Services . 21

Starting from Scratch . 24

Debugging . 24

General Hints . 24

Debugging Services . 25

Case Studies . 27

1

mailto:gavo@ari.uni-heidelberg.de

More on Grammars 33

reGrammars . 33

fitsProdGrammar . 34

csvGrammar . 35

Source Fields . 35

More on Tables 36

Notes . 36

STC . 37

More on Services 38

Custom Templates . 38

Values Metadata . 39

More on Cores 39

CondDescs . 39

Automatic and manual control 40

Phrase makers . 41

More on Metadata 43

Authors . 43

Coverage . 43

(Content) Type . 44

Copyright . 44

Active Tags 45

LOOP . 45

Some Words on Times 46

2

Publishing DAL Services 48

SCS . 49

Tables . 49

Cores . 49

Service . 50

SIAP . 51

Quick Start . 51

Tables . 52

Cores . 55

Service . 56

SSAP . 56

Tables . 56

Cores . 58

Service . 60

ObsTAP . 61

Publishing DaCHS-managed tables via TAP 63

Publishing existing tables via TAP 64

EPN-TAP . 65

Quick Start . 65

Tables . 67

Service . 67

Writing Examples 68

TAP examples . 68

Datalink examples . 69

Generic examples . 70

Services Over Views 70

3

The Registry Interface 73

Restricting Access 74

User/Group management . 74

Protecting Services . 75

Embargoing Products . 76

This tutorial intends to guide you through ingestion of data and setting up
of services. Even if you plan to only publish images or spectra, you should
work through the first part; it explains a lot about DaCHS’ central concept,
the resource descriptor (RD), recommended directory layouts, the basics of
metadata and services, and debugging.

Invoking DaCHS
For historical reasons, all DaCHS functionality is invoked through a program
called gavo. Multiple functions are integrated and selected through the first
argument; run gavo help to see what’s available; realistically, the functions most
operators will be confronted with are import, serve, publish, and test.

There is a man page on gavo, but it’s less well maintained then we would like,
so the best way to discover subcommands and options available is to use the
built-in help, as in:

$ gavo --help
Usage: gavo {<global option>} <func> {<func option>} {<func argument>}
<func> is a unique prefix into {admin, adql, config, dlrun, drop,

gendoc, import, info, init, limits, mkboost, mkrd, publish, purge,
raise, serve, show, stc, taprun, test, totesturl, upgrade, uwsrun,
validate}

Try gavo <func> --help for function-specific help

Options:
-h, --help show this help message and exit
--traceback print a traceback on all errors.
--hints if there are hints on an error, display them
--enable-pdb run pdb on all errors.
--disable-spew Ignored.
--profile-to=PROFILEPATH

enable profiling and write a profile to PROFILEPATH
--suppress-log Do not log exceptions and such to the gavo-specific

log files
--debug Produce debug info as appropirate.
--version Write software version to stdout and exit
-U UI, --ui=UI use UI to show what is going on; try --ui=help to see

available interfaces.

4

Most of DaCHS’s global options have to do with debugging; it is sometimes
useful go say:

gavo --ui stingy ...

do reduce the program’s chattiness.

For a brief overview what the individual functions are, see the man page or use
the built-in help, as in:

$ gavo limits --help
usage: gavo limits [-h] itemId

Updates existing values min/max items in a referenced table or RD.

positional arguments:
itemId Cross-RD reference of a table or RD to update, as in ds/q or

ds/q#mytable; only RDs in inputsDir can be updated.

optional arguments:
-h, --help show this help message and exit

Building a Catalog Service

Quick start

To do anything useful with DaCHS, you will have to write a resource descriptor
(RD), and you’ll probably have to have some data. Both must reside within
some subdirectory of DaCHS’ input directory (unless you configured otherwise,
that’s /var/gavo/inputs; we assume that in the following).

This tutorial will use the ARIHIP catalog as an example – this is a re-reduction of
the Hipparcos result catalog with particularly careful solutions for proper motion.
It has a column-based input and probably a few more columns than your average
catalog these days. It hence is simple in principle but let us demonstrate a few
advanced concepts, too.

You can, in principle, run the following under any user id, as long as you wisely
manage the permissions. For testing, however, we recommend doing it as the
data center administrative account (for the Debian package, that’s gavoadmin,
if you did the setup manually, it’s whatever user did the gavo init).

To get a quick start, just pull in the RD in use by GAVO’s data center:

5

cd /var/gavo/inputs
mkdir arihip
cd arihip
curl -O http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/arihip/q.rd

The directory name ("arihip" in this case) will (normally) appear in URLs, so it’s
a good idea to choose something descriptive and short. The directory created
here is ususally called the resource directory in DaCHS lingo.

The resource descriptor name also appears in URLs. At GAVO’s data center,
we usually call it q.rd as that looks nicely query-ish (to our tastes).

Next, get the raw data. We recommend keeping data in a subdirectory of
resource directory (and suggest to call that subdirectory data). At the GAVO
DC we usually keep everything in the resource directory under version control
except for that data directory (which tends to be large, full of binary files, and
either versioned by upstream or not at all):

mkdir data
cd data
curl -O http://dc.g-vo.org/arihip/q/cone/static/data.txt.gz

At this point, we’re ready for ingestion. All commands to DaCHS go through
the gavo program that has several sub-commands; in this case, we need the
import sub-command. The sub-commands can be abbreviated as long as the
abbreviation is unambiguous:

cd ..
gavo imp q

This should run for a while, reporting the number of ingested rows now and
then, and finally say something like "Rows affected: XY". With this, the data
is in the database and is ready for querying.

Let us mention in passing that gavo imp tries to interpret its first argument first
as a file system path. If that fails, it tries to interpret it as an RD identifier, i.e.,
the inputsDir-relative path of the RD with the extension stripped. Our example
RD thus has the RD id arihip/q, and you could have said:

gavo imp arihip/q

from anywhere in the file system.

After you have imported a table, it is a good idea to run gavo info with the
DaCHS identifier of the freshly imported table, e.g.,:

6

gavo info arihip/q#main

The DaCHS identifier of the table consists of the RD id as introduced above,
the hash (inspired by the URL fragment identifier) and the id of the table.

This will output several properties (min, max, avg) of numeric columns that
may help spot import errors. Also note that for each column, the presence of
NULLs is given. When you import data, it is a good idea to check whether these
correspond to your expectations, and to consider declaring columns as required
when they do not indeed contain NULLs.

Now start the server; if you installed from the Debian package, it is already
running; stop it first for this tutorial:

sudo /etc/init.d/dachs stop # only if installed from package
gavo serve debug

(if the last command fails with permission problems, add yourself to the gavo
group, say newgrp gavo and try again).

The RD sets up a form-based service you can operate from a web browser;
open the URL http://localhost:8080/arihip/q/cone/form1 and play around a
bit. Note the small links behind some query fields – DaCHS supports VizieR-
like expressions in those fields.

Briefly have a look at the URL; apart from the host name and port (see the
operator’s guide on how to change those), there is the path to the RD (without
the file extension), then the id of the service element (see below) and a "renderer
name". That essentially defines the physical interface of the service, i.e., which
protocol it is accessed through. In this case, it’s form for an HTML form.

Another renderer supported by this service is scs.xml, which implements
the IVOA Simple Cone Search (SCS) protocol. A client that supports
this is TOPCAT; to try it out, in TOPCAT select VO/Cone Search and
fill out the Cone URL field in the lower part of the window to be
http://localhost:8080/arihip/q/cone/scs.xml. Enter some object name and a
sufficiently large search radius (e.g., Aldebaran and 0.5 degrees), and you’ll see
the results coming in.

Incidentally, cone search does not (yet) have a usable interface to discover
additional parameters, and hence TOPCAT restricts you to those mandatory
for every SCS service. For instance, as delivered, arihip admits an mv pa-
rameter. DaCHS supports a special syntax for "free" parameters of cone
searches as defined by the spectral access protocol SSAP; to say "everything
brighter than 6th magnitude", the parameter setting would be /6; to use this

7

http://localhost:8080/arihip/q/cone/form
http://docs.g-vo.org/DaCHS/opguide.html
http://www.star.bris.ac.uk/~mbt/topcat/

constraint within TOPCAT, the access URL needs to be amended like this:
http://localhost:8080/arihip/q/cone/scs.xml?mv=/6.

Finally, the RD opens the arihip table for the IVOA Table Access Protocol TAP,
which allows queries in a dialect of SQL. Again, TOPCAT has a nice client for
TAP built in. To try it, select VO/TAP Query, enter http://localhost:8080/tap
in the TAP URL field near the bottom of the window, and hit "Enter Query". In
the resulting dialog, you can browse the table’s metadata and then enter queries
like:

SELECT * from arihip.main where sqrt(pmde*pmde+pmra*pmra)>2/3600.

For more information on what fancy things you can do here, see GAVO’s ADQL
short course

The anatomy of the RD

Now have a look at the RD by bringing up q.rd in your favourite editor. It starts
out with:

<resource schema="arihip">

RDs are normal XML files (meaning that you could, e.g., add an XML decla-
ration if you want an encoding other than utf-8), and thus they need a root
element. Hopefully unsurprisingly, this is called resource for RDs. DaCHS typ-
ically does not distinguish attributes and elements with atomic content, which
means that you could also have written the fragment above as:

<resource>
<schema>arihip</schema>

This notational freedom sometimes allows clearer notation, and it helps with
defining active tags. Multiple specifications of the same property make up mul-
tiple values where the property is sequence-like (in the reference documentation
this is indicated by phrases like "zero or more" or "list of" in the properties
descriptions). For atomic properties, later specifications overwrite earlier ones.

The schema attribute on resource gives the (database) schema that tables for
this resource will turn up in. You should, in general, use the name of the
resource directory here. If you don’t, you have to give the subdirectory name in
the resource element’s resdir attribute – either way, this is then used to build
absolute paths within the RD, e.g., for the sources element discussed below.

8

http://www.g-vo.org/adql
http://www.g-vo.org/adql
http://docs.g-vo.org/DaCHS/ref.html

In general, you should have exactly one RD per database schema. This is not
enforced, but sharing schemata between RDs will cause many undesirable be-
haviours. An example is permissions: When importing a table, the schema
access rights are adapted. If you have one RD A defining an ADQL-queriable
table in schema X and another RD B that has no ADQL-queriable table, im-
porting A will make schema X readable to untrusted queries, whereas importing
B will make it unreadable again; this would lead to query failures (which could,
in this case, fixed by adding untrusted to B’s readRoles manually, but you get
the idea).

Another hint: There’s a fairly large body of RDs at http://svn.ari.uni-heidelberg.
de/svn/gavo/hdinputs, and most of them are free for inspection and blatant
stealing (if you need a license on any of this, let us know). These RDs can
be seen live on http://dc.g-vo.org. To locate examples for concrete elements,
meta items, and such, have a look at our RD element reference for these.

The RD goes on to give metadata applying to everything within the RD:

<meta name="title">ARIHIP astrometric catalogue</meta>
<meta name="creationDate">2010-11-03T10:13:00</meta>
<meta name="description">

The catalogue ARIHIP has been constructed by
selecting the ’best data’ for a given star from combinations of HIPPARCOS
data with Boss’ GC and/or the Tycho-2 catalogue as well as the FK6. It
provides ’best data’ for 90 842 stars with a typical mean error of
0.89 mas/year (about a factor of 1.3 better than Hipparcos for this
sample of stars).

</meta>
<meta name="creator">Wielen, R.; Schwan, H.; Dettbarn, C.; et al</meta>

<meta name="subject">Catalogs</meta>
<meta name="subject">Astrometry</meta>
<meta name="subject">Stars: Proper Motions</meta>
<meta name="type">Catalog</meta>

<meta name="coverage">
<meta name="profile">AllSky ICRS</meta>
<meta name="waveband">Optical</meta>

</meta>

<meta name="_longdoc" format="rst">
The ARIHIP Catalogue is a suitable combination of the results of the
HIPPARCOS astrometry satellite with ground-based data.

(abridged)
</meta>

<meta name="source">
Veröff. Astron. Rechen-Inst. No. 40 (2001); http://www/datenbanken/arihip/catalog.html

</meta>

9

http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs
http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs
http://dc.g-vo.org
http://docs.g-vo.org/DaCHS/elemref.html

<meta name="_intro" format="rst"> <![CDATA[
For advanced queries on this catalogue use ADQL_
possibly via TAP_

.. _ADQL: /adql

.. _TAP: /tap
]]> </meta>

This metadata is cruicial for later registration of the service, and some of it
turns up in service responses. If you have a look at the HTML form you opened
above, you will find quite a bit of it in the sidebar.

Metadata elements have a name attribute that gives the "kind" of metadata
contained, and sometimes also determine a specific type. Metadata can be
hierarchical, where hierarchy elements are separated by dots, and metadata
can come in various formats as determined by the format attribute. If you
give nothing here, DaCHS will apply some whitespace normalization, and it
will interpret empty lines as paragraphs if the target format supports it. With
format="rst", the content will be interpreted as reStructuredText. Be careful
to use consistent indenation in this case. There are some other, more obscure,
formats, too, that you do not need to worry about right now.

See More on Metadata for more information on what is what here.

Defining Tables

A major part of the metadata DaCHS deals with is the table structure. It is
defined in table elements, which usually are direct children of the resoource
element. A resource element may contain multiple table definitions. See http:
//dc.g-vo.org/arihip/q/cone/static for what upstream documentation we had
when we made the service.

Skip over the macDef elements for now to where the table element begins. What
you see is something like:

<table id="main" onDisk="True" adql="True" mixin="//scs#q3cindex"
primary="hipno">

The id attribute of the table doubles as the name of the database table;
make sure you use something that works as a valid simple SQL identifier (i.e.,
[A-Za-z_][A-Za-z0-9_]*) – DaCHS does not support for delimited identifiers as
table names.

10

http://docutils.sourceforge.net/rst.html
http://dc.g-vo.org/arihip/q/cone/static
http://dc.g-vo.org/arihip/q/cone/static

Be sure to always specify onDisk="True" unless you’re going for special effects –
without it, the table will end up only in memory. The adql attribute says that
TAP queries should be allowed on the table; leave it out for tables not suitable
for "raw" consumption by your clients.

For the mixin attribute, see Indices and Mixins.

Finally, using the primary attribute you can specify an explicit primary key of
the table (if it is made up of several columns, concatenate their names with
commas). This is made into a primary key for postgres straightforwardly, which
means that the database makes sure there are no two rows with the same value
for the primary key. Also, the database creates an index for efficient queries
using the primary key.

What follows is a definition of the structure of the space-time coordinates:

<stc>
Position ICRS Epoch J2000.0 "raj2000" "dej2000" Error "err_ra" "err_de"

Velocity "pmra" "pmde" Error "err_pmra" "err_pmde"
</stc>
<stc>

Position ICRS Epoch J2000.0 "raHIP" "deHIP" Error "err_raHIP" "err_deHIP"
Velocity "pmraHIP" "pmdeHIP" Error "err_pmraHIP" "err_pmdeHIP"

</stc>
<stc>

Position ICRS Epoch J2000.0 "raSTP" "deSTP" Error "err_raSTP" "err_deSTP"
Velocity "pmraSTP" "pmdeSTP" Error "err_pmraSTP" "err_pmdeSTP"

</stc>
<stc>

Position ICRS Epoch J2000.0 "raLTP" "deLTP" Error "err_raLTP" "err_deLTP"
Velocity "pmraLTP" "pmdeLTP" Error "err_pmraLTP" "err_pmdeLTP"

</stc>

What this says is that there’s a number of coordinate structures in the table,
grouping together positions, errors, and proper motions in a specific reference
frame. This is again a topic of its own, discussed in STC

Finally, we’re at the column definitions:

<column name="hipno" type="integer" ucd="meta.id;meta.main"
tablehead="HIP id" verbLevel="1"
description="Number of the star in the HIPPARCOS Catalogue (ESA 1997)."
required="True"/>

<column name="srcSel" type="text" ucd="meta.flag"
tablehead="Source" verbLevel="25"
description="Source of the astrometric solution"
note="src"/>

11

For every column ending up in the table, there is one column element with a host
of attributes. The name attribute is central in that it will be the column name
in the database (incidentally, it’s not id as with tables as it is quite common
for different tables in one RD to have columns with the same name, and that
would violate the id attribute’s uniqueness constraint), the key for the column’s
value in record dictionaries that the software uses internally, and it is usually
used to reference the column from the outside. Column names must be legal
identifiers for both python and SQL in DaCHS. SQL delimited identifiers thus
are not allowed (this is not the whole truth, but it’s true enough, and you’re
saving yourself a lot of headache if you simply believe it).

The type attribute defaults to real, and can otherwise take values in valid SQL
datatypes. The DC software knows how to handle

• text – a string. You could also use types with explicit length like char(7),
but this is highly discouraged; it does not help postgres (or much anything
else within the DC), but it hurts insofar as DaCHS cannot produce NULLs
for such constructs in most VOTable serialisations.

• real – a real number.

• double precision – a floating point number. You should use in doubles if
you need to keep more than about 7 digits of mantissa.

• integer – typically a 32-bit integer

• bigint – typically a 64-bit integer

• smallint – typically a 16-bit integer

• timestamp – a combination of date and time. While postgres can process a
very large range of dates, the DC stores timestamps in datetime.datetime
objects, which means that for "astronomical" times (like 10000 B.C. or
10000 A.D. you may need to use custom representations. Also, the DC
assumes all times to be without time zones. Further time metadata (like
distinguishing TT from UT) is given through STC specifications.

• date – a date. See timestamp.

• time – a time. See timestamp

• box – a rectangle.

• spoint, scircle, sbox, spoly – objects of spherical geometry, taken from
pgSphere (http://pgsphere.projects.pgfoundry.org/). Ask for documenta-
tion...

12

http://pgsphere.projects.pgfoundry.org/

Some more types (like raw and file) are available to tables in service definitions,
but they should, in general, not appear in database tables.

Futher metadata on columns includes:

• unit – the unit the column values are in. The syntax is that of VOUnits.
Unit is left out for unitless values.

• tablehead – a very short string designating the content. This string is
typically used for display purposes, e.g., as table headings or labels on
input fields and defaults to the capitalized column name.

• description – a longer string characterizing the content. This may be in
bubble help or VOTable descriptions. Since these could be longer, you
may want to put them in a child element rather than an attribute; in both
cases, whitespace is normalized, so you can enter line breaks and similar
for readability in the source, and they will always be rendered as a single
blank. For even longer, note-like material, see Notes. An example for a
long descripton:

<column name="aperture">
<description>The aperture is the full-width-half-mean of the

response function of our sage 3000 hyper-detector.</description>
</column>

• ucd – a Unified Content Descriptor as defined by IVOA. To figure out
"good" UCDs, the GAVO UCD resolver can help. An easy way to come
up with them is also to leave them out initially and then run gavo admin
suggestucds (it’s what we do these days).

• required – True if value must be set in order for the record to be valid. By
default, NULL (which in python is None) is a valid value for any column
and will silently be inserted if you don’t assign a value in the rowmaker
(see below). For required columns, an error will be raised when a value
is missing. In HTTP service interfaces, missing required parameters will
lead to a 400 invalid parameters HTTP response.

• verbLevel – A measure for the "importance" of the column. Various pro-
tocols have the notion of "verbosity", where higher verbosity means you
get to see more columns with more esoteric content. Within DaCHS,
verbLevel is a number between (usefully) 1 and 30, with columns with
verbLevel 1 always given and those with verbLevel 30 only given if some-
one really wants to see all columns. Technically, in SCS, a column is part
of the output table if its verbLevel is smaller or equal to ten times the
query’s VERB parameter.

13

http://www.ivoa.net/documents/VOUnits/index.html
http://dc.g-vo.org/ucds/ui/ui/form

Column elements may have a child element values. This lets you specify meta-
data like maximum or minimum, or enumerate possible values. The most com-
mon use is the definition of null literals, though. This is not necessary for
floats, and usually not even strings, because these have useful (and actually
non-overridable) null values in the VOTable representation (where this sort of
thing counts most). It is, however, highly recommended to give null literals when
defining integral types (including chars) that may have null values. DaCHS will
try to pick useful null values for those automatically when possible, but when
streaming tables, this is impossible, and errors will be raised during VOTable
rendering when NULLs are encountered in such a situation.

So, just define null values whenever you define a non-required integral column,
like this:

<column name="n_obs" type="integer"
description="Number of
observations, NULL if interpolated data">

<values nullLiteral="-1"/>
</column>

The output of gavo info (see above) can help you to choose suitable NULL
values. To help people spot them when metadata is missing, it’s usually wise
to choose "conspicuous" null values (like -1, 9999, or similar).

Table elements may contain metadata. You do not need to repeat metadata
given for the resource, because (in most cases) the DC performs metadata
inheritance. This means that if a table is asked for a piece of metadata it does
not have, it forwards that request to the embedding resource. For multi-table
resources, you should usually give title and description metas.

Scrolling a bit further down in the arihip RD, you’ll notice some LOOP con-
structs. These are discussed below under active tags.

At the end of the table element, there are meta elements called "note"; for
those, see Notes.

Parsing Input Data

Going further down in the RD, you will find a data element. Their main purpose
is to describe how certain input files fill the table(s) defined above. It starts like
this:

<data id="import">
<sources>data/data.txt.gz</sources>

14

./ref.html#element-values

Data elements can have ids which can be used to indiviually reference them
from a gavo imp command line; this is useful if you just want to import one part
of a multi-table data collection. The default of gavo imp default is to build all
data elements except those having an auto="False" attribute.

It is recommended that the id is a short verb phrase, as data basically contains
instructions for an action. You might rightly argue that we have not chosen the
element name too aptly (recipe might have been more appropriate), but we feel
it’s too late to change it now.

The sources element lets you specify the names of the input files to be processed.
There are several ways to do that; in this case, there’s just one input file,
which is given as element content, with the path interpreted relative to the
resource directory. If the data was distributed into several files in two directories,
something like the following specification would do the trick:

<sources>
<pattern>inp2/*.txt</pattern>
<pattern>inp1/*.txt</pattern>

</sources>

The sources element also has a recurse (boolean) attribute that makes DaCHS
search for the pattern in the subdirectories of the path part of the pattern.

Now have a look at the input file:

zless data/data.txt.gz

You’ll see that we have a plain ASCII file with aligned columns, header lines, and
even a cell separator ("|"). That’s still a fairly common format for raw data, but
by no means the only one. To give DaCHS the flexibility to deal with anything
upstream cares to throw at you, DaCHS has the concept of a grammar.

There are many grammars defined, e.g., for getting values from FITS files,
VOTables, or using column-based formats; you can also write specialized gram-
mars in python. All grammars read "something" and emit a mapping from
names to (mostly) string values; those unprocessed string-to-string mappings
are called "rawdicts" in DaCHS jargon (distinguished from "rowdicts" ready for
database ingestion, which sport processed and typed data).

It is often useful to inspect what a grammar emits. You can do that using
import’s --dump flag. During development, it is frequently convenient to just
import a few rows and watch what they produce; this would look like this:

gavo imp -M 100 --dump q.rd | less

15

http://docs.g-vo.org/DaCHS/ref.html#element-sources

(if you interrrupt the above command, your table should be unscathed – check
with gavo info –; otherwise just re-run the full import).

With a source that has both a separator character and aligned columns, there
are several valid choice for which grammar to use on this particular file. In the
RD, it next says:

<columnGrammar topIgnoredLines="9" preFilter="zcat">
<colDefs>

hipno: 3-8
srcSel: 47-49
alphaHMS: 59-73
deltaDMS: 77-91
pmra_mas: 95-103
pmde_mas: 107-115
t_ra_mod: 119-123
err_ra_mas:127-131
err_pmra_mas:135-139
t_de_mod: 143-147
err_de_mas:151-155
err_pmde_mas:159-163
parallax_mas:167-172
e_parallax_mas:176-180
kp: 184
vrad: 188-195
mv: 199-203
km: 207
kbin: 211-212
kdmu: 216
kae: 220
flags: 882-901

</colDefs>

– so we went for a columnGrammar. Those cut up every input line along
character indices that are here, following the display in most editors, are counted
from 1 upwards. Note that in ranges, the last column is included in the string –
these are no python slices but basically a representation of the character ranges
in VizieR-style "byte-by-byte"-descriptions.

The assignment of names to column ranges can happen both in a colDefs ele-
ment as shown above – one specification per line, label mapped to a column or
a range of columns.

Alternatively, have several col elements, each of which has a key attribute that
gives a name. This could be the name of a target column in the simplest case,
or it can be an auxillary identifier that is later processed in a rowmaker. These
individual specifications are interesting when combined with RD macros, and
that’s where they come in in the arihip RD (again, using LOOPs).

16

http://docs.g-vo.org/DaCHS/ref.html#element-columngrammar

Grammars also have various attributes; the ones parsing from text files sup-
port, for example, topIgnoredLines, which allows you to skip header lines, and
preFilter that allows running the input through a shell command before it is
processed using DaCHS (if you find yourself doing more than just decompression
in such a preFilter, you should probably look for a different solution).

Mapping data

The arihip RD then goes on with:

<make table="main">
<rowmaker idmaps="*">

<var name="raj2000">hmsToDeg(@alphaHMS, None)</var>
<var name="dej2000">dmsToDeg(@deltaDMS, None)</var>
...
<map dest="kbin">parseWithNull(@kbin, str, "9")</map>
<map dest="vrad">parseWithNull(

@vrad, lambda a:float(killBlanks(a)), "")</map>

The make element brings together a table (in the table attribute) with a recipe
how to fill it from the output of the grammar (the row maker).

Incidentally, there can be multiple make elements in a single data element if mul-
tiple tables (using different row makers) are generated from the same grammar
output. This is particularly useful in combination with dispatching grammars
that let, in effect, the grammar choose which make to use.

Makes can also carry scripts in SQL or python, at various points of the building
process. These let you perform all kinds of higher magic. For details, see the
chapter on scripting in the reference.

As explained above, output of grammars and hence the input to a make is a
sequence of mappings from names to strings (the "rawdicts"). The database, on
the other hand, wants typed values, i.e., integers, time stamps, etc. Also, data
in input tables is frequently given in inconvenient formats (e.g., sexagesimal
angles), deprecated or inconsistent units, or values may be distributed over
multiple columns (e.g., date and time of an observation when we want a single
timestamp). To cover these and more tasks, DaCHS has row makers, the results
of which are then called rowdicts (note the subtle difference from the rawdicts
coming in from the grammars: "row makers turn rawdicts into rowdicts").

Basically a row maker consists of

• var elements -- assignments of expression values names in the rawdict.

17

http://docs.g-vo.org/DaCHS/ref.html#element-make
http://docs.g-vo.org/DaCHS/ref.html#dispatching-grammars
http://docs.g-vo.org/DaCHS/ref.html#scripting
http://docs.g-vo.org/DaCHS/ref.html#element-var

• map elements -- simple mappings of (python) expressions to values in the
destination rowdict

• procedure applications (see apply) -- manipulations of both rawdicts and
rowdicts in python code

The fragment above shows one of several ways to use both var and map (which
work exactly the same way, except that vars end up in the rawdict, and map
in the rowdict): generating values from python expressions, where there is the
special syntax @identifier which expands to whatever value the rawdict has for
that key (or raises a KeyError if the key is not present in the rawdict).

The rawdict manipulations that var does are useful if you want to re-use what-
ever you compute. The map element, on the other hand, writes directly into the
results dictionary, the keys of which directly correspond to the column names.

When building a rowdict for ingestion into the database, a row maker first binds
var names, then applies procedures and finally performs the mappings. In the
bodies of the mappings, you can use all built-in python functions plus a set
of useful rowmaker functions documented in the reference documentation, as
well as everything from the python standard library modules datetime, math, os,
re, sys, time, and urllib (you need to give the module name when referring to
names from these modules as in, e.g., re.sub). Furthermore, the gavo modules
base, stc, and utils are in the namespace of the mapping code, as well as the
submodule utils.pgsphere. TODO: link to useful documentation for them here.

For simple cases, maps will suffice; frequently, you can do without python ex-
pressions by giving a src attribute specifying a rawdict key instead of element
content (which is preferable if possible – as elsewhere, less code is better in
RDs, too). The rawdict string will in this case be converted to a typed value us-
ing "sane" defaults (e.g., integers will be converted by python’s int constructor,
where empty strings are mapped to None, datetimes are parsed as ISO strings,
etc)

If you match the keys in the rawdicts with the names of the database columns
their content is supposed to end up with and the content needs no further
manipulations, a row maker like:

<rowmaker>
<map dest="evi" src="evi"/>
<map dest="av" src="av"/>
<map dest="ai" src="ai"/>

</rowmaker>

would to the trick. Since this is a bit unwieldy, DaCHS provides a shortcut:

18

http://docs.g-vo.org/DaCHS/ref.html#element-map
http://docs.g-vo.org/DaCHS/ref.html#element-apply
http://docs.g-vo.org/DaCHS/ref.html#functions-available-for-row-makers

<rowmaker> <simplemaps>evi:evi,av:av,ai:ai</simplemaps> </rowmaker>

which expands to exactly what is written above. The keys in each pair do not
need to be identical; the first item of each pair is the table column name, the
second the rawdict key.

The case where the names of rawdict and rowdict keys are identical is so common
(since the RD author in general controls both) that there is yet another shortcut
for this:

<rowmaker>
<idmaps>evi,av,ai</idmaps>

</rowmaker>

Idmaps sets up one map element each with both dest and src set to the value
for every name in the comma separated list idmaps.

You can abbreviate this further to:

<rowmaker idmaps="*"/>

– so, idmaps values can contain shell patterns. They will be matched to the
column names in the target table. For every column for which there is no explicit
mapping, an identity mapping (with type conversion) will be set up with this
specification.

Of course, you can have values that do not even depend on grammar output:

<map dest="dateIngested">datetime.datetime.now()</map>

Null values are always troublesome. Within DaCHS, the null value (almost)
always is python’s None. There is the row maker function parseWithNull to help
you come up with those; if your upstream was devious enough to use 99.99 as
a null value for a magnitude, you could say:

<map dest="Vmag">parseWithNull(@VmagSrc, float, "99.99")</map>

Note that the null value here is a literal matched against the string coming
from the grammar; due to the rounding errors when converting from decimal
to binary floating points, you can only safely compare against relatively few
floating point numbers (99.99 is not among them), so you shouldn’t do that if
you can avoid it.

19

If you need to scale this (or if null values are chosen that they are invalid literals
to begin with), a feature that lets you null out a value when an specific type of
exception is raised comes in handy. This is map’s nullExcs attribute, which is
just a comma separated list of exceptions that should be caught and interpreted
as "this is null". If, in the example above, the source would give the magnitude
in millimags to save a comma, you could use:

<map dest="Vmag" nullExcs="TypeError"
>parseWithNull(@VmagSrc, float, "99999")/1000.</map>

If parseWithNull22 here returns None, a ‘‘TypeError will be raised and caught,
and Vmag will be None.

You can turn more than one exception into None. For example example, if
magicOffset has been parsed before and could be None, while magicLit is to be
parsed and has the empty string as a NULL literal, you could write:

<map dest="magic" nullExcs="ValueError,TypeError"
>@magicOffset+float(@magicLit)</map>

If magicOffset is None, magic will be None via the TypeError, whereas empty
magicLits will result in Nones via a ValueError.

We defer the discussion of apply elements to the discussion of how to build
SIAP services.

rowmaker elements may also be direct children of resource; this is for when they
are used in more than one data. You would then give the rowmaker an id
attribute and say something like <make rowmaker="id-of-rowmaker" table=.../>
However, for the standard case it’s best to keep everything related to a given
import together in the make element.

Indices and Mixins

We have so far deferred the discussion of the mixin attribute in arihip’s opening
table element:

<table id="main" onDisk="True" adql="True" mixin="//scs#q3cindex"
primary="hipno">

Mixins are DaCHS’ primary tool to endow tables with "everything needed to
serve a standard" (e.g., a minimal set of columns, certain indices, or metadata).
For instance, an image table must have a certain structure determined by the SIA

20

protocol. Either of the //siap#pgs and //siap#bbox mixins make sure that tables
have this structure, and they make sure that the table containing information
on all the file-like datasets in the data center (which is called dc.products) is
updated when the table is filled.

The content of the mixin element (or the attribute value when you give the
mixin property as an attribute) is a reference to a mixin definition. These
references typically go into some system descriptor (though you could define
your own mixins), and the double slash in a DaCHS reference means "system
descriptor" (in actual truth, it’s just an abbreviation for __system__/). The
reference documentation contains a chapter on DaCHS’ public mixins. For
the curious: you can have a look at the actual definitions by admin’s dumpDF
subcommand, e.g., like this:

gavo admin dumpDF //scs

The //scs#q3cindex mixin referenced here arranges for spatial indexing of tables
having some sort of spherical coordinates. To identify which columns to index,
DaCHS inspects the UCDs of the columns; what it looks for here are columns
with UCDs of pos.eq.(ra|dec);meta.main‘ as index columns2. Contrary to mixins
for other standard protocols, it does not automatically insert these columns (and
neither the only other required column in SCS, the main row identifier with the
UCD meta.id;meta.main).

Since in addition to spatial queries, we also expect a lot of queries constraining
the mv column, we ask for an index on it using DaCHS’ index element, which is
a child of table:

<index columns="mv"/>

This is the simplest, but mostly sufficient, form of defining an index; for ad-
vanced usage, please refer to the reference documentation. If you decide to
add an index to a table later on, or to initiate re-indexing after a lot of data
changed, see the -I option of gavo imp.

Cores and Services

The last but one part of the RD deals with how to get the data out of the
database again, i.e., the services exposing the data. This part is fairly simple
for arihip:

<service id="cone" allowed="scs.xml,form">
<meta name="shortName">arihip cone</meta>

21

http://docs.g-vo.org/DaCHS/ref.html#mixins
http://docs.g-vo.org/DaCHS/ref.html#element-index
http://docs.g-vo.org/DaCHS/ref.html

<meta name="testQuery">
<meta name="ra">9.4076</meta>
<meta name="dec">9.6414</meta>
<meta name="sr">1.0</meta>

</meta>

<dbCore queriedTable="main">
<FEED source="//scs#coreDescs"/>
<condDesc buildFrom="mv"/>
<condDesc>

<inputKey original="hipno" required="False"/>
</condDesc>

</dbCore>

<publish render="scs.xml" sets="ivo_managed"/>
<publish render="form" sets="ivo_managed,local"/>
<outputTable verbLevel="20"/>

</service>

To understand what’s going on here, some basic understanding of DaCHS’
service architecture is required; it consists of:

• cores; they actually do the computation or database query

• renderers; these digest the data coming in from the service and (in general)
format the result in some way requested by the user. There are renderers
for web forms, VO protocols, imges, etc. Frequently – as in the example
–, you can use the same core for both a VO protocol and a form-based
service by just allowing different renderers.

• The service; it holds together the core and the renderer, can reformat core
results, controls the metadata, etc.

The renderers are referenced by name in the service’s allowed attribute. What
can be given there (concatenated by commas) is listed in the reference docu-
mentation’s renderer chapter. As you have seen above, the renderer is selected
via the URL. If a client tries to retrieve a URL with a renderer that is not in
the service’s allowed list, DaCHS will respond with a 403 forbidden HTTP code
(excepting certain "unchecked" renderers like info that typically expose service
metadata). In addition, not all cores can be combined with all renderers even if
you list them in allowed. For example, the ssap.xml renderer will not (usefully)
work on anything but an ssapCore.

The most common core for catalog services (and the one you’ll typically use for
SCS services) is the dbCore, as used here. See cores available in the reference
documentation for more predefined cores -- e.g., to run ADQL queries or to
upload files. For special functionality, you can even write your own core.

22

http://docs.g-vo.org/DaCHS/ref.html#renderers-available
http://docs.g-vo.org/DaCHS/ref.html#element-dbcore
http://docs.g-vo.org/DaCHS/ref.html#cores-available
http://docs.g-vo.org/DaCHS/ref.html#writing-custom-cores

The dbCore generates a (single-table) query from condition descriptors and
returns a table that you describe through an output table. Cores are defined as
direct children of the resource (as with grammars, you can also have them in
resource and then write core="id-of-element", which makes sense when a single
core is shared by several services).

dbCores need a queriedTable attribute, the value of which must be a table
reference. This is the table the query will run against.

The condition descriptors (or condDescs for short) define input fields (for the
form renderer, these will be rendered as form items people can fill in). Most
commonly, you will either define them using the original attribute (when inher-
iting from predefined condDescs) or using buildFrom. The first case is typically
used in connection with protocols and on tables having mixins; such condDescs
result in zero or more input fields, and they typically inspect the queried table.
For example, the //scs#humanScs condDesc locates the "main" positions as iden-
tified by UCDs and generates queries against them using two input fields, one
it tries to guess a position from, and another for the search radius.

When you define a condDesc using buildFrom, the result is usually one or more in-
put field(s) constraining values in the column named in the buildFrom attribute.
The software tries to make some useful input definition from that column, de-
pending on the renderer. Renderers with a parameter style (this is given in
each renderer’s description the reference documentation) of "form", for exam-
ple, let users query string-like columns using Vizier-like string expressions, real
and double precision columns using Vizier-like float expressions, and so on. The
pql style allows a specification like for SSAP (e.g., "range_min/range_max").

The service element must have an id attribute that is used to select the service
run in the access URL. Furthermore, there should be certain pieces of metadata
useful in later registration. First, there’s shortName, which is typically used by
clients in space-restricted displays. It must not be longer than 16 characters, so
something like an acronym and a very terse role identifier is the best you can do
(hence the "arihip cone" here). Frequently, a title meta is also useful, in partic-
ular when an RD contains multiple services, in which case one could be "Cone
search for ARI’s HIPPARCOS re-reduction" and the other, say, "Autocorrelation
on ARI’s HIPPARCOS re-reduction".

See the data checklist for more information on useful generic metadata and
remember that services inherit whatever is defined within resource when not
specified within the element.

Many standard VO protocols require additional, protocol-specific metadata. In
the case of arihip, we have a Simple Cone Search service, which, as laid down
in the section on the scs.xml renderer in the reference documentation, requires
the parameters of a test query returning a nonempty result.

23

http//docs.g-vo.org/DaCHS/data_checklist.html
http://docs.g-vo.org/DaCHS/ref.html#the-scs-xml-renderer

Starting from Scratch

When you start to write your own RD, it might be a good idea to start from
our RD template. To do this, create your resource directory, go in there and
say:

gavo admin dumpDF src/template.rd_ > q.rd

(dumpDF stands for "dump distribution file" and is the canonical way to get at
DaCHS "built-in" files).

Right now, this only contains the skeleton for the metadata. We may expand it
as we get good ideas on how to keep things generic. Or should we have different
templates for various major service types?

There’s also gavo mkrd, which can generate RD templates from some types of
inputs. We’re not convinced this kind of thing actually is useful, but you’re
welcome to try it and encourage us if you like it, in particular if you have ideas
on how to improve things.

Debugging

Writing RDs is like programming, and sometimes it involves actual programming
in python.

Hence, you’ll get things wrong, and DaCHS probably will annoy you. Giving
good error messages – neither drowning you in a deluge of mostly-useless infor-
mation nor swallowing important pieces of data, neither claiming too much nor
to little, not misleading you about what is actually going on – is a high art, and
we are aware we should be doing better. Your feedback will help us improve.

Still, with a few hints and techniques figuring out what’s wrong isn’t much
harder in DaCHS than with your average programming system. In the following,
we collect some hints on what to do if things don’t work.

General Hints

• If you get error messages, be sure to check our hints on common prob-
lems – may commonly encountered problems are explained there with
suggestions for how to fix them.

• The gavo command takes a --hints switch. With it, error messages are
frequently accompanied with – you guessed it – hints on what might cause
the problem and possible solutions. Note that --hints, like the other
debugging switches, goes between gavo and the subcommand name, as in
gavo --hints serve.

24

http://docs.g-vo.org/commonproblems.html
http://docs.g-vo.org/commonproblems.html

• Validate your RD. This is, in general, a good idea before doing anything
with the RD, since it will allow you to more easily catch errors than the
in all likelihood even more byzantine error messages that may arise when
something goes wrong later. The gavo val subcommand takes one or
more RDs. If you don’t understand its output, complain to gavo@ari.uni-
heidelberg.de -- the command is really intended to help you catch errors,
and if it doesn’t do so, it’s a bug.

• Check the logs. They are in /var/gavo/logs by default, and there’s dcEr-
rors and dcInfos (you’ll want to look at both).

• When hunting bugs, it’s usually a good idea to enable the logging of
(many) tracebacks by passing the --debug flag to gavo.

• If you’re trying to figure out server behaviour, don’t run the server dae-
monized but use gavo serve debug instead; this won’t detach and log to
stdout.

• With this (or the problem is in normally-running DaCHS code in the first
place), the python debugger is your friend. The gavo command has an op-
tion --enable-pdb that will dump you into the debugger where an uncaught
exception happened (as the server should never let an uncaught exception
through, that’s not useful with gavo serve). If that doesn’t help you, you
can set breakpoints (e.g., in your own in-RD procedure defininitions by
writing import pdb; pdb.set_trace. If you install the python-ipdb package,
and write ipdb instead of pdb, you’ll get a nicer debugger commandline
with tab completion and similar frills.

• To see what SQL is actually sent to the database, set the
GAVO_SQL_DEBUG environment variable to any value. This could look
like this:

env GAVO_SQL_DEBUG=1 gavo imp q create

The first couple of requests are for internal use (like checking that some
meta tables are present).

• If gavo serve start doesn’t actually cause the server to run, something
went wrong after detaching from the controlling terminal. The messages
are in the logs directory, in the file serverStderr.

Debugging Services

Debugging services is of course an extra challenge since code runs deep in the
bowels of a complex system, with timeouts, threads, and all kinds of nasty-
ness involved. The first adivce is: Pull whatever is mysterious into your de-
velopment system and run gavo serve debug. You can even do the import

25

mailto:gavo@ari.uni-heidelberg.de
mailto:gavo@ari.uni-heidelberg.de

pdb;pdb.set_trace() trick then. It’s a bit tricky to communicate with the debug-
ger in between the log messages of gavo serve debug, and there’s no readline
support since pdb doesn’t think it’s running within a terminal there, but it’s
definitely doable.

Another challenge is that sometimes problems manifest themselves in a running
server. In that case it’s sometimes useful to open a manhole into the server.
One reasonably convenient way to do this is to but a special RD somewhere
(e.g., __tests/manhole.rd) and use some RD-embedded code to introspect the
server. We ususally use a datalink service for this since it keeps things nicely
self-contained – an obvious alternative with less bending could be a custom
renderer.

Here’s how something that fiddles out a column property would look like:

<resource schema="test">
<service id="look" allowed="dlget">

<datalinkCore>
<descriptorGenerator>

<code>
return ProductDescriptor(None, None, None, ’text/plain’,)

</code>
</descriptorGenerator>
<dataFunction>

<code>
descriptor.data = "debugging"

</code>
</dataFunction>
<dataFormatter>

<code>
class DebugResult(Page):

def renderHTTP(self, ctx):
request = IRequest(ctx)
request.setHeader("content-type", "text/plain")
return "%s"%base.caches.getRD("maidanak/res/rawframes"

).getById("rawframes").getColumnByName("accref").displayHint
return DebugResult()

</code>
</dataFormatter>

</datalinkCore>
</service>

</resource>

All but the data formatter is just blind code for hiding our true intentions from
the datalink machinery. In the data formatter, you can return arbitrary text.
You can now access http://localhost:8080/__tests/manhole/look?ID=0 and see
whatever gets returned from renderHTTP (the value of ID obviously is arbitrary
here, although you could use it to transmit information into your debugging
code; not that we think that’s a good idea).

26

Note that you can edit manhole.rd, save it, and reload the page; the server will
notice your changes and display the new result without a restart.

Case Studies

In this section we will damage the arihip RD in various ways, show you how the
errors manifest themselves, and how you could try and figure them out. It’s
highly recommended to play the scenarios; it’s very well possible that the actual
messages will look differently for you if we’ve changed and hopefully improved
the software. We’re thankful if you point us to outdated samples.

XML syntax errors These are mostly easy to diagnose (and fix), except that
sometimes the errors show up too late. For an example of a dramatic failure,
delete the closing tag of the source meta. The result then is:

arihip > gavo imp q
** Error: In /home/msdemlei/gavo/inputs/arihip/q.rd: mismatched tag:
line 674, column 2

In this particular case, a dedicated XML validator gives more helpful diagnostics:

/arihip > xmlstarlet val -e q.rd
q.rd:674.12: Opening and ending tag mismatch: meta line 72 and resource
</resource>

^
q.rd - invalid

The reason DaCHS does so bad here is that meta elements are allowed to have all
kinds of children (for typed meta, which we’ve not covered so far). DaCHS does
better when you add some random XML fragment, e.g., the wonder element in
the next example:

<table id="main" onDisk="True" adql="True" mixin="//scs#q3cindex"
primary="hipno">

<wonder>foo</wonder>

This time, DaCHS gets it pretty much right:

msdemlei@victor:/home/msdemlei/gavo/inputs/arihip > gavo imp q
** Error: At /home/msdemlei/gavo/inputs/arihip/q.rd, (112, 4): table
elements have no wonder attributes or children.

27

Well-formedness problems frequently turn up with embedded python code or re-
StructuredText markup. To see what happens then, delete the opening CDATA
sequence in:

<meta name="note" tag="tabflags"><![CDATA[

This results in:

arihip > gavo imp q
** Error: In /home/msdemlei/gavo/inputs/arihip/q.rd: not well-formed
(invalid token): line 411, column 24

If you check out the indicated line, you’ll see some table markup. Now that
you’re warned, you’ll probably see immediately that there’s a less-than sign
there that’s not allowed in XML parsed character data, but while writing up
such material, it’s easy to forget that < and & are magic to XML. CDATA is
your fried for embedded formal languages.

Now for a particularly nasty syntax error that’s not XML-related at all. To
trigger it, go to the note meta with the "src" tag and remove whitespace from
the second column line like this:

<meta name="note" tag="src">
The srcSel field indicates which catalogue the astrometric solution

was taken from using the following codes:

That results in:

arihip > gavo --debug imp q
** Error: At /home/msdemlei/gavo/inputs/arihip/q.rd, (317, 4): Bad
text in meta value (Bad indent in line u’ was taken from using the
following codes:’)

If you go to the position given, you’ll notice it’s the end of the meta element.
What bugs DaCHS there is somewhat pythonesque. Both python and reStruc-
turedText are indentation-sensitive. In particular, even if you, say, indent all
lines in a python program by two blanks, the result will be invalid source code.

Hence, DaCHS removes leading indentation from the content of all elements
containing such material, and the amount of indentation is goverened by the
second line, where the line with the opening tag counts; in the example above,
DaCHS tries to subtract from every subsequent line the indentation of the line
starting with "The srcSel field" (the first line is the one containing the tag).

28

This kind of problem is particularly insidious if you’re mixing blanks with tabs
for indentation. Don’t do this in python, don’t do this in RDs.

All this means that RDs can break of XML processing tools normalize whitespace
in certain elements. This is a bit unfortunate since the way RDs are written,
they’re not even completely wrong in doing this. So, the bottom line is: you
need careful instructions to standard XML processors if you actually want to
write RDs. However, if you feel the need to write RDs programmatically, you’re
probably doing it wrong: RDs already generate things, and if another genera-
tion layer seems necessary, that would indicate a design problem somewhere –
possibly in DaCHS.

Rowmaker trouble Since rowmakers are a fairly thin layer on top of python,
it’s easy to elicit fairly confusing messages here. To see how this looks in an
easy case, change the kbin mapping to:

<map dest="kbin">parsWithNull(@kbin, str, "9")</map>

(note the missing e). The result is an error message that looks a bit frightening
with rawdicts as large as in this case:

arihip > gavo imp q
Making data import
Starting /home/msdemlei/gavo/inputs/arihip/data/data.txt.gz
Failed /home/msdemlei/gavo/inputs/arihip/data/data.txt.gz
** Error: Row {u’pmdeLTP’: None, u’srcSel’: ’T2H’, u’err_raHIP’:
[abridged]
..’, u’ddeLTP’: ’- 2.37’, u’pmra_mas’: ’- 4.85’,
u’raHIP’: None} Field kbin: While building kbin in None: name
’parsWithNull’ is not defined

The dump of the rawdict, however, is often helpful enough to warrant the scary
appearance, even at the risk of obscuring the actual message at the very end.
Note that the "while building kbin" tells you where in the rowmaker something
went wrong: At the mapping of kbin. The in None part may be a bit less
fortunate – the "None" here is the id of the rowmaker, which you didn’t give.
If you have multiple rowmakers in an RD, it’s a good idea to name them. So,
add an id attribute as in:

<make table="main">
<rowmaker idmaps="*" id="make_main_row">

and to the improvement in the error message:

29

Field kbin: While building kbin in make_main_row: name
’parsWithNull’ is not defined

Now undo the changes and try another frequent problem by deleting the vrad
mapping, i.e., removing the entire element:

<map dest="vrad">parseWithNull(
@vrad, lambda a:float(killBlanks(a)), "")</map>

This gives:

/arihip > gavo imp -M 12 q
[...]
Field vrad: While building vrad in None: could not
convert string to float: + 8.3

What’s going on? Something is going on with vrad; specifically, the string ’+
8.3’ cannot be turned into a float (which is because it’s not a valid float literal).
But since we’re no longer mapping vrad, why is the machinery even trying that?
Well, this is a consequence of the idmaps="*" of this rowmaker. When there is a
key vrad in the rawdict and a column vrad is required, the default transformation
from string to float is tried (and this fails in this case).

What happens if no such input key is present? To find out, additionally remove
the line:

vrad: 188-195

from the column grammar’s colDefs element. The result is:

arihip > gavo imp -M 12 q
Making data import
Starting /home/msdemlei/gavo/inputs/arihip/data/data.txt.gz

Source hit import limit, import aborted.
Done /home/msdemlei/gavo/inputs/arihip/data/data.txt.gz, read 13
Shipped 13/13
Create index Primary key on arihip.main
Create index main_mv
Create index main_q3c_main
Rows affected: 13

– a clean import. However, all vrads in the table are now, of course, NULL:

30

arihip > gavo info arihip/q#main
col min avg max hasnulls
[...]
vrad None None None True
[...]

– watch out for those. For DaCHS, it’s normally no problem if a key is missing
in the input (which is in many situations desirable); the missing value is just
replaced with None. You can forbid NULLs using the required attribute on the
column vrad by editing it like this:

<column name="vrad" ucd="phys.veloc;pos.heliocentric"
required="True"
tablehead="v_rad" verbLevel="20" unit="km/s"
description="Radial velocity as used in calculating the foreshortening
effect."/>

This now yields an error; note that the message is fairly generic, but if you
consider that rawdicts are mappings, you will at least see the logic in it:

arihip > gavo imp -M 12 q
Making data import
Starting /home/msdemlei/gavo/inputs/arihip/data/data.txt.gz

Source hit import limit, import aborted.
Done /home/msdemlei/gavo/inputs/arihip/data/data.txt.gz, read 1
** Error: Row {u’pmdeLTP’: None, u’srcSel’: ’T2H’, u’err_raHIP’:
[...]
u’ddeLTP’: ’- 2.37’, u’pmra_mas’: ’- 4.85’, u’raHIP’: None}
Field vrad: While building vrad in None: Key ’vrad’ not found in a
mapping.

When debugging stuff like this, it is sometimes useful to cut-and-paste the
rawdict dumped into a file, join all the lines, remove the parser_ key-value pair
(the content of which cannot be represented as a string), assign it to a name
and then manipulate it in the rest of the file using python statements. You
can have a similar effect by giving --enable-pdb as a gavo main option; this will
dump you in a debugger at the place of the problem.

Undo all changes to the arihip RD to continue.

If you embed code yourself, the potential for challenging bugs is yet larger. To
see how basic problems are reported, add:

<apply>
<code>

ddt
</code>

</apply>

31

somewhere within the RD. This yields:

arihip > gavo imp q
[...]
u’raHIP’: None} Field proc98577cc: While executing proc98577cc in
None: global name ’ddt’ is not defined

The message coming from the bowels of python is clear enough, but the alphabet
soup giving the error is not. This name was invented by DaCHS since no name
(sorry, not id this time) attribute was given to apply. Try it, the error message
will be much more palatable with it.

The error message still could be more helpful, however; consider code like:

<apply>
<code>

a = 1
b = 2/a
c = 3/(a+b)
d = 4/(a+b+c+1)
e = 5/d

</code>
</apply>

The error message here is:

While executing proc985706c in None: integer division or modulo by zero

So – where does this happen? To get an idea, you can pass the –debug flag to
gavo, which in the dcInfo log file at least yields:

2013-09-23 15:57:37,304 [INFO 24430] Swallowed the exception below, re-raising Field proc985706c: While executing proc985706c in None: integer division or modulo by zero
Traceback (most recent call last):

File ".../gavo/rscdef/rmkdef.py", line 583, in __call__
exec self.code in self.globals, locals

File "generated mapper code", line 13, in <module>
File "<string>", line 9, in proc985706c

ZeroDivisionError: integer division or modulo by zero

The trouble is that the source code line isn’t given, and the source that refers
to isn’t yet visible to you in this case. We promise to improve the management
of the source code. Until then, frankly, the nicest way to debug stuff like this is
to write:

32

<apply>
<code>

import pdb; pdb.set_trace()
...

and then use the python debugger to figure things out.

More on Grammars
In addition to the columnGrammar mentioned above, there are several other gram-
mars you should know about; the full list of grammars available is found in the
reference documentation.

reGrammars

The reGrammar is another grammar suitable for parsing text files. The idea
here is that you give two regular expressions to separate the file into records
and the records into fields, and that you simply enumerate the names used in
the mapping.

In the simplest case – whitespace separated columns in lines containing no
whitespace, with one comment line at the top –, such a grammar could be
specified like this:

<reGrammar topIgnoredLines="1">
<names>raMin, raMax, decMin, decMax, EVI, AV, AI</names>

</reGrammar>

reGrammars have a few tricks built-in to make them a bit more versatile. The
following lets you simulate properly parsing some bzipped database dump by
making some strong assumptions:

<reGrammar topIgnoredLines="15" preFilter="bzcat">
<fieldSep>"?,(\s*")?</fieldSep>
<recordCleaner>\((.*)\)</recordCleaner>
<names>primflag, measure_no, paper_id, source_no, source_name</names>

</reGrammar>

If things get noticeably more complex than this, an reGrammar may no longer
be a terribly good solution. Indeed, we would welcome a contributed grammar
that would do a somewhat more robust parsing of common SQL text dumps.

33

http://docs.g-vo.org/DaCHS/ref.html#grammars-available
http://docs.g-vo.org/DaCHS/ref.html#element-regrammar

fitsProdGrammar

This grammar exposes FITS headers as rawdicts. Since both data structures
represent essentially the same data structure – sequences of key-value pairs, you
can get away with just:

<fitsProdGrammar/>

– and that would cover a lot of use cases that read FITS files.

DaCHS uses pyfits to parse the headers and thus supports all the major con-
ventions (CONTINUE cards are transparent, as are HIERARCH-style long key-
words). Neither HISTORY nor COMMENT cards are present in the rawdicts.

There are some snags, anyway. For example, DaCHS by default reads the
header bytes using specialized code that is somewhat more robust and has
more desirable behaviour with odd files than the pyfits one (you can deselect
it by setting qnd="False" if necessary). This gives up collecting header blocks
if it has not found the end card after maxHeaderBlocks blocks. The default
maxHeaderBlocks is chosen to be 40, which is reasonable for reasonable FITSes.
However, we have seen in the wild massive abuse of comment cards to hold
entire tables. If you’re unlucky enough to have to handle such files, you may
have to raise this.

It is fairly common for FITS keywords to contain a dash (-). Since rawdict keys
are supposed to be python identifier (e.g., for @-referencing), fitsProdGrammars
translate these to underscores. If further cleanup is necessary, there is the
mapKeys element that lets you write things like:

<mapKeys>
<map key="properName">PROP NAM</map>

</mapKeys>

The element should only be used to fix crazy names. Actual mapping of names
should be performed in rowmakers.

FITS files are somewhat more complex, and fitsProdGrammars expose some of
this. If you need to parse from a header other than the primary one, give the
0-base extension number in hdu. For the full power of pyfits (but also all in-
compatibilities that are introduced by using that power), there is the hdusField
attribute. This gives the key under which the pyfits HDU is visible in the raw-
dict. Be warned that using this might make your grammar dramatically slower,
in particular when it operates on gzipped FITS files (which are, incientally,
supported if their file names end in ".gz").

34

csvGrammar

csvGrammar parses from files containing comma separated values. It actually is
a thin wrapper around python’s csv module, and thus it is fairly forgiving about
the idiosyncrasies of CSV (e.g., quotes around all, some, or no values). You can
configure the delimiter character via the same-named attribute (it defaults to,
expectably, comma). It is currently required, though, that the first row gives
the column headings. If you need the capability to name fields as in, say, the
reGrammar, let us know – it’s just a few lines of code.

Source Fields

All grammars can have a sourceFields element. It contains a standard procedure
definition (i.e., you could predefine those and bind parameters), but usually you
will just fill in the code.

This code is called once for each source processed, and receives the sourceToken
as argument. It must return a dictionary, the key/value pairs of which will be
added to all rows returned by the row iterator.

The purpose of sourceFields is to precompute values that depend on the source
("file") and are constant for all rows within it. An example for where you need
this is when you want to create backlinks to the file a piece of data came from:

<xygrammar>
<sourceFields>

<code>
srcKey = utils.getRelativePath(sourceToken,

base.getConfig("inputsDir"))
return locals()

</code>
</sourceFields>

</xygrammar>

You can then retrieve the path to the source file via srcKey key in rawdicts (and
then, using render functions and static renderers, turn this into links).

In addition to the sourceToken, you also have access to the data that
will be fed from the grammar. This can be used to, e.g., retrieve
the resource directory (data.dd.rd.resdir) or data descriptor properties
(data.dd.getProperty("whatever")).

Sometimes you want to do database queries from within sourceFields. This
is tricky when you access the table being written or otherwise being accessed.
This is because sourceTokens run in the midst of a transaction updating the
table. So, something like:

35

<code>
<!-- will deadlock, don’t do it like this -->
base.SimpleQuerier().query(...)

</code>

will wait for the transaction to finish. But the transaction is waiting for data
that will only come when the query finishes -- this is a deadlock, and gavo imp
will just sit there and wait (see also Deadlocks).

To get around this, you need to query using the data’s connection. So, instead
write:

<code>
base.SimpleQuerier(connection=data.connection).query(...)

</code>

More on Tables

Notes

Frequently, you need to say more about a column than is appropriate in the
few-phrase description. In catalog descriptions and VizieR, such situations are
handled using notes, and DaCHS follows suit.

The notes themselves are kept in meta elements belonging to tables. Since the
notes tend to be markup-heavy, their default format is reStructuredText. When
entering notes in RDs, there is an attribute tag on these meta items:

<table id="demo">
...
<meta name="note" tag="1">

The meaning of the flag is as follows:

===== ==========
value meaning
===== ==========
1 value is 2
2 value is 1
===== ==========

</meta>

<meta name="note" tag="2">
...

</table>

To assoicate a column with a note, use the column’s note attribute:

36

commonproblems.html#deadlocks

<colum name="crazyflag" type="smallint" ... note="1"/>

As tag, you may use basically any string, but it’s a good idea to keep it to
numbers or at least characters not requiring URL encoding.

The notes will exposed in HTML table heads, table and service descriptions,
etc. If you need to link to one, there is the built-in tablenote renderer that takes
the table and the note from its query path. The most convenient way to is it
is through the built-in vanity name tablenote, where you would access the note
above using a URL like http://your.server/tablenote/demoschema.demo/1.

STC

As soon as you have coordinates, you will want to declare coordinate metadata
on them, i.e., reference frames, roles played by tables (x is the derivative of
y, and x1 is a galactic latitude, etc). In VO lingo, this is known as declaring
"space-time coordinates" or STC for short.

DaCHS uses a language called STC-S to do this. The STC-S definition currently
only exists as a note and is both a bit terse and not quite as rigorous as one
would wish, but the good news is that you will get by with but a few features
most of the time.

STC is defined in children of table elements, with references to table columns
in quoted strings:

<table id="withcoo">
<stc>

Position ICRS "ra" "dec" Error "e_ra" "e_dec"
</stc>
<stc>

Position FK4 J1950.0 "ra_orig" "dec_orig"
</stc>

<column name="ra" unit=...
<column name="dec" ...
...

</table>

You do not need to change anything in the column definitions themselves, since
the machinery will resolve your column references. If you refer to non-existing
columns, RD parse errors will be thrown.

37

More on Services

Custom Templates

Within the data center, most pages are generated from templates; these are
written in XHTML (well-formed XML is important, DaCHS itself does not care
avout valid XHTML, though) with stan/nevow markup. Please bug us to provide
more documentation on this.

The pages the form renderer on services displays are generated from such tem-
plates, too. To effect special effects, you may want to override them (though
in general, it is a much better idea to work within the standard template since
that will give your service all kind of automatic updates and would make, e.g.,
changes much easier if your institution undergoes the yearly reorganization).

You can retrieve the default response template as something to start from by
saying:

gavo admin dumpDF templates/defaultsresponse.html

To obtain the plainest output conceivable, try:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html mlns="http://www.w3.org/1999/xhtml"
xmlns:n="http://nevow.com/ns/nevow/0.1">

<head>
<title>No title</title>

</head>
<body>

<div class="result" n:render="ifdata" n:data="result">
<div class="result">
<n:invisible n:render="resulttable"/>

</div>
</div>
<n:invisible n:render="form genForm"/>

</body>
</html>

Save this to a file within the resource directory, let’s say "res/plain.html". Then,
say:

<template key="form">res/plain.html</template>

38

in your service; this should do give you a minimally decorated page.

Of course, this will display a severely degraded page. To get at least the standard
style sheet and the standard javascript, say:

<head n:render="commonhead">

instead of the plain head.

Values Metadata

For input parameters, it’s usually a good idea to indicate to users what the
valid range for them might be. When you give values elements in your tables’
columns, DaCHS will have placeholders in floating point and integer fields in
web forms and appropriate VOTable values elements in the metadata responses
for DAL protocols. So, essentially:

<column ...>
<values min="-1.0" max="2.0/>

</column>

would be enough. However, maintaining these min and max values is a bit
of a chore. On the other hand, obtaining them from the database can be
costly, and hence it shouldn’t be done at each server start. Hence, DaCHS
has a subcommand limits that takes an RD or table id as the command line
argument and replaces the existing min/max values in the referenced thing with
data obtained from the database. So, the recommended way to do these things
is to stereotypically add <values min="0" max="0"/> in columns that generate
query parameters and then run either of:

gavo limits arihip/q # update all tables present
gavo limits arihip/q#main # only update the single table

after an import giving new data.

More on Cores

CondDescs

dbCores and cores derived from them take most of their power from condition
descriptors or CondDescs. These combine inputKeys, which are basically col-
umn objects with some additional presentation-related information, with code
generating SQL conditions.

39

A condDesc can contain zero or more input keys (though having zero input
keys makes no sense for user-defined condDescs since they would never "fire").
Having more than one input key is useful when input quantities can only be
interpreted when present as a group. An example is the standard cone search,
where you need both a position and a search radius.

Automatic and manual control

However, most condDescs correspond to one input key, and the input key is
mostly derived from a table column. This is effected by the standard idiom:

<condDesc buildFrom="somecol"/>

where somecol is a column in the table queried by the core. This construct will
cause the an input key to be built from somecol. While doing this, the type will
be mapped automatically. The primary rules are:

• Numeric types will get mapped to numeric vizier-like expressions

• Datetimes will get mapped to date vizier-like expressions

• text and chars will get mapped to string vizier-like expressions

• enumerated values (i.e., columns with value elements giving options) will
not become vizier-like expressions but input keys that yield selection wid-
gets.

To have more control (e.g., if you do not want to allow vizier-like expressions,
give the input key yourself):

<condDesc>
<inputKey original="primaryId" required="False"/>

</condDesc>

(which would make a column required in the table optional in the query), or:

<condDesc>
<inputKey name="specType" tablehead="Spectral Type"

type="text" description="Spectral type of the target object">
</condDesc>

(which creates an input key matching everything literally), or even:

40

<condDesc>
<inputKey name="color" type="text" required="True">

<values multiOk="True">
<option title="Red">R</option>
<option title="Green">G</option>
<option title="Blue">B</option>

</values>
</inputKey>

</condDesc>

-- if the input key is required, queries not giving it will be rejected. The title
attribute on option gives the label of an option in the HTML input widget; if
it’s missing, a string representation of the value will be used.

In all those cases, the SQL generated from the condDesc is a conjunction of
the input key’s individual SQL expressions. Those, in turn, are simply compar-
isons for equality for plain types and more or less arbitrary expressions for vizier
expression types.

Incidentally, two properties on inputKeys are defined to only show inputs for
certain renderers, viz., onlyForRenderer and notForRenderer. Both have single
strings as values. This is intended mainly for cases like SIAP and SCS where
there are "human-oriented" versions of the input fields available. The built-
in SCS and SIAP conditions already to that, so you can give both scs and
humanSCS conditions in a core. Here is how you would define an input key that
is only used for the form renderer:

<inputKey original="color">
<property name="onlyForRenderer">form</property>

</inputKey>

Phrase makers

For complete control over what SQL is generated, condDescs may contain code
called a phrase maker. This, again, is a procedure application, quite like with
rowmaker procs, except that the signature of condDesc code is different.

Phrase maker code has the following names available:

• inputKeys -- the list of input keys for the parent CondDesc

• inPars -- a dictionary mapping inputKey names to the values provided by
the user

• outPars -- a dictionary that is later used as the parameter dictionary to
the query.

41

The code should amend the outPars dictionary with the keys mentioned in
the the conditions. The conditions themselves are yielded. So, a very simple
condDesc with generated SQL could look like this:

<condDesc> <!-- don’t do it like this, see below -->
<inputKey name="val"/>
<phraseMaker>

<code>
outPars["xxyy"] = "x"*inPars.get("val", 20)
yield "someColumn=%(xxyy)s"

</code>
</phraseMaker>

</condDesc>

However, using fixed names in outPars is not recommended, if only because
condDescs could be used multiple times. The recommended way uses the vizier-
exprs.getSQLKey function. It takes a name, a value, and the outPars dictionary.
It will return a key unique to the query in question and enter the value into the
outPars dictionary under that key. While that sounds complicated, it is actually
rather harmless, as shown in the following real-world example that lets users
input date, time and an interval in split-up form (e.g., when you cannot hope
anyone will try to write the equivalent vizier-like expressions):

<condDesc>
<inputKey name="date" tablehead="Date" type="date"

multiplicity="single"
required="True"/>

<inputKey name="time" tablehead="Time (UTC)" type="time"
multiplicity="single"
required="True"/>

<inputKey name="within" required="True" type="integer"
multiplicity="single"
tablehead="plus/minus" unit="minutes"
description="Give measurements within this many minutes
of your chosen date and time. The sampling rate is 20 minutes">

<values default="11"/>
</inputKey>
<phraseMaker>

<code>
baseTS = datetime.datetime.combine(inPars["date"], inPars["time"])
dt = datetime.timedelta(minutes=inPars["within"])
yield "date BETWEEN %%(%s)s AND %%(%s)s"%(

vizierexprs.getSQLKey("date", baseTS-dt, outPars),
vizierexprs.getSQLKey("date", baseTS+dt, outPars))

</code>
</phraseMaker>

</condDesc>

42

More on Metadata
In general, most metadata for services and resources rather closely follows what’s
defined in Resource Metadata for the Virtual Observatory; see also the Reference
Manual on RMI-style metadata.

Authors

VOResource wants split-up author specifications, and for a good reason. How-
ever, for longer author lists, these are a pain to write down (see also RMI-Style
Metadata in the reference).

As a shortcut, DaCHS lets you specify authors in the simple creator metadata
as semicolon-separated names. Unless you want to set logos or similar, the
recommended way to declare authors is:

<meta name="creator">Author1, S.; Author-Two, J.C.</meta>

Coverage

One tricky spot is coverage, i.e., the parts of the STC space covered by what’s
in the resource. In general, you will define coverage more or less like this:

<meta name="coverage">
<meta name="profile">AllSky ICRS</meta>
<meta name="waveband">Optical</meta>

</meta>

The easy part is the waveband. Values here are from a fixed set of strings,
viz., Radio, Millimeter, Infrared, Optical, UV, EUV, X-ray, Gamma-ray; capital-
ization is important, and you may give multiple elements (the software doesn’t
enforce this selection, but your registry documents will become invalid if you
use anything else).

The coverage.profile meta item has STC-S strings as values. See the STC-S
Note as well as the STC library documentation for more information on the
STC-S understood by DaCHS. In principle, you can get fancy here; for example,
you could write:

<meta name="coverage.profile">
TimeInterval TT BARYCENTER 1999-10-01T20:30:00 1999-10-02T20:30:10

unit s Error 10 Resolution 1 2
Circle FK5 J1980.0 GEOCENTER 0.13 0.45 0.03 unit rad

PixSize 0.0001 0.0001
SpectralInterval HELIOCENTER 2000 6000 unit Angstrom Error 1
RedshiftInterval TOPOCENTER VELOCITY RELATIVISTIC -10 10 unit km/s

</meta>

43

http://www.ivoa.net/Documents/latest/RM.html
./ref.html#rmi-style-metadata
./ref.html#rmi-style-metadata
http://docs.g-vo.org/DaCHS/ref.html#rmi-style-metadata
http://docs.g-vo.org/DaCHS/ref.html#rmi-style-metadata
http://www.ivoa.net/Documents/Notes/STC-S/
http://www.ivoa.net/Documents/Notes/STC-S/
./stc.html

However, the registries probably evaluate not very much of this information as
yet, and you most certainly should try to give positions in ICRS.

(Content) Type

Values for type come from a controlled vocabulary that includes Other, Archive,
Bibliography, Catalog, Journal, Library, Simulation, Survey, Transformation, Ed-
ucation, Outreach, EPOResource, Animation, Artwork, Background, BasicData,
Historical, Photographic, Press, Organisation, Project, Registry.

Specifying the content type is optional, and you can repeat the meta element
as often as you need to.

If you are unsure what these mean, see Resource Metadata for the Virtual
Observatory, section 3.3.

Copyright

Within the astronomical community, licensing issues have traditionally played a
minor role – if you referenced properly, using data from other people was not
only ok, it was encouraged. We should keep it that way, even in the days of
easy reproducability. Still, formal statements about how your data may be used
may be useful. These statements are called licenses.

RMI has the copyright meta for this purpose. Right now, DaCHS doesn’t
do much with this information; it includes it in VOResource records, and the
default response template shows it below the query form. We recommend either
specifying something like "The data is in the public domain" or, if you want to
use something that’s more in line with scientific habits, the Creative Commons
Attribution ("CC-BY"). To support this, DaCHS includes a macro that can be
used in meta elements that are direct children of the resource element. Use it
like this:

<resource...
<meta name="copyright" format="rst">

\RSTccby{Image metadata}

Usage conditions for individual images could differ. See the
COPYING FITS header.

</meta>
</resource>

The advantage of using the macro is that you get a nice image, and in the
future we may expand this to a formal, machine-readable declaration.

44

http://www.ivoa.net/Documents/latest/RM.html
http://www.ivoa.net/Documents/latest/RM.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Active Tags
Active "tags" delemit elements within resource descriptor XML that do not di-
rectly contribute to result tree. Their typical use is to "record" event sequences
and replay them later. Much of this is used internally. However, some applica-
tions of active tags are interesting for RD writers, too. Active tags always have
names in all upper-case.

LOOP

Loop lets you create multiple elements by rules. The simplest way to use it is
by giving a space-separated list of "items":

<LOOP listItems="a b c">
<events>

<column name="\item"/>
</events>

</LOOP>

The events child of the LOOP element creates a list of events (think "begin column
element", "value for name attribute", "end column element"). These events are
then replayed to the parser for each item in the LOOP’s listItems attribute.
Each occurrence of the \\item macro is replaced with the current item. So, in
the resulting RD tree, the fragment above will have the same result as:

<column name="a"/>
<column name="b"/>
<column name="c"/>

Sometimes the list items are used in multiple places in the same document. To
avoid having to maintain multiple lists, you can define macros using RD’s macDef
element; this could look like this:

<resource schema="foo">
<macDef name="bands">U B V R</macDef>
<table id="mags">

<LOOP listItems="\bands">
<events>

<column name="mag\item"/>
</events>

</LOOP>
</table>
<rowmaker id="build_mags">

<LOOP listItems="\bands"/>
<events>

<map dest="mag\item">parseFromString(MAG_\item)</map>

45

</events>
</LOOP>

</rowmaker>
....
</resource>

Note that macro names must be at least two characters long.

Frequently, the loop variable should not just take on a single string. For such
cases you can feed in tuples. The most convenient way to do this is csvItems.
The content of this element is a string literal containing comma separated values
with labels, i.e., parsable with python’s csv.DictReader. In your events, you can
then refer to the labeled items using macros. For example:

<resource schema="foo">
<macDef name="bands">

band,source
U 10-12
V 13-16

</macDef>
<table id="mags">

<LOOP csvItems="\bands">
<column name="mag\band"/>

</LOOP>
</table>
<data id="magscontent">

<columnGrammar>
<LOOP csvItems="\bands">

<col key="mag\band">\source</col>
</LOOP>

</columnGrammar>
<make table="mags"/>

</data>
</resource>

TODO: EDIT actives?

Some Words on Times
Among the messier data types in astronomical databases are dates and times
– they come in lots of crazy input formats, they can be represented in lots
of different ways in the database, they are expected in lots of crazy output
formats, plus there’s a host of exciting metadata on them, including time scales
and reference positions.

With DaCHS, we recommend one of the following ways of storing dates and
times (written as attributes of column):

46

• type="double precision" xtype="mjd" unit="d" – a modified julian date

• type="double precision" unit="d" – a julian date

• type="double precision" unit="s" – a unix timestamp

• type="double precision" unit="yr" – a Julian year with fractions

• type="timestamp" – a postgresql timestamp

All other things being equal, we recommend using mjds; most VO data mod-
els and protocols employ them, and they are fairly easy to query against. In
HTML forms, they are easily displayed as human-readable datetimes by using an
displayHint="type=humanDate" (which you can do for the others, too, of course).

The Julian years are a good choice, too, and they are immediately human-
readable to some extent. They are certainly the representation of choice for
epochs and equinoxes. Note that the storage of Bessel years is strongly discour-
aged. Use the bYearToDateTime function to transform them to datetime instances
which you can then map to any recommended representation.

While timestamps might sound like a good idea in that they are the proper
native type to manipulate dates and times with, they usually are a bad choice.
The main reason is that in ADQL there is basically no support of timestamps at
all, which makes any manipulation of them in ADQL queries virtually impossible.
If you’re sure your table will never turn up on a TAP service, that doesn’t hurt
much, but can you be sure?

All this didn’t mention any UCDs or utypes that may apply. UCDs should
not, in general, depend on the time format chosen; all of the above could
be used for quantities like time.creation, time.end, time.epoch, time.equinox,
time.processing, time.release, time.start, and more. The SIAP version 1 pro-
tocol made a funky exception there, defining an VOX:Image_MJDateObs UCD; ev-
erything about that UCD is horrible, and it is generally accepted in the VO that
this was an error.

Finally, there is advanced metadata, in particular time zones, time scales (i.e.,
how does the the time pass) and reference positions (i.e., where is the clock
positioned).

Time zones are not supported at all in the VO. All times are for the Greenwhich
meridian (i.e., they should be close to UTC).

The time scales are important on the level of seconds; they include TAI (the
time scale defined by a bunch of atomic clocks, UTC (TAI with leap seconds,
basically our everyday time), UT, UT0, UT1, UT2 (several sorts of true times
in Greenwich), and TT (Terrestial Time, a time scale linked to the TAI and

47

used quite a bit in Astronomy). More of that on the fairly readable http:
//stjarnhimlen.se/comp/time.html.

The reference positions are currently relevant on a level of milliseconds or below;
they need to be declared for high precision work since a clock in the barycenter
of the solar system will (evaporate but before that) run slower than one on
Pluto due to relativistic effects of various sorts. Common reference positions
would be TOPOCENTER (the observatory), GEOCENTER (the center of the
Earth), BARYCENTER (the barycenter of the solar system) and UNKNOWN
(the default, which you should keep unless you are sure; it doesn’t matter
anyhow for most applications).

To declare those, you must include a time phrase in your STC declaration in
your table. Typically, this could look like this:

<table id="foo">
<stc>TimeInterval TT "timeStart" "timeEnd" Time "dateObs"</stc>

<column name="timeStart" ucd="time.start" unit="d"/>
<column name="timeEnd" ucd="time.end" unit="d"/>
<column name="dateObs" ucd="time.epoch;obs" unit="yr"/>
...

(descriptions and everything else left out for clarity; in particular, for times using
double precision almost always is a good idea).

Publishing DAL Services
DAL is VO-speak for "Data Access Layer", the standard protocols the VO uses
to allow remote querying of data. To support such a protocol, you usually need
to arrange things in three places:

• The table queried needs a certain set of columns

• The core must support certain input and output fields

• The renderer must exhibit specified behaviour as regards, e.g., the for-
matting of error messages, and it may require protocol-specific metadata

This section discusses the individual protocols in turn.

48

http://stjarnhimlen.se/comp/time.html
http://stjarnhimlen.se/comp/time.html

SCS

SCS, the simple cone search, is the simplest IVOA DAL protocol -- it is just
HTTP with RA, DEC, and SR parameters, a slightly constrained VOTable re-
sponse, plus a special way to encode errors (in a way somewhat different from
what has been specified for later DAL protocols).

The service discussed in Building a Catalog Service is a combined SCS/form
service. This section just briefly recapitulates what was discussed there. For a
quick start, just follow the tutorial above.

Tables

In principle, SCS can expose any table that has a exactly one column each with
the UCDs pos.eq.ra;meta.main, pos.eq.dec;meta.main, and meta.id;meta.main,
where the coordinates must be real or double precision, and the id must be
either some integral type or text; the standard requires the id to be text, but
the renderer will automatically convert integral types. The main query is then
ran against the position specified in this way.

You almost always want to have a spatial index on these columns. To do that,
use the //scs#q3cindex mixin on the tables, like this:

<table id="forSCS" onDisk="true" mixin="//scs#q3cindex"> ...

Finally, note that to have a valid SCS service, you must make sure the output
table always contains the three required columns (as defined by the UCDs given
above. To ensure that, these columns’ verbLevel attribute must be 10 or less
(we advise to have it at 1).

Cores

The SCS core simply is a dbCore. You must include the SCS condDesc, like
this:

<dbCore queriedTable="main">
<condDesc original="//scs#protoInput"/>

</dbCore>

There is an alternative condDesc more suitable for humans. They can be used
in parallel. The form renderer will then use the human-oriented one, the DAL
renderer the protocol one. You’ll get this by writing:

49

<dbCore id="xlcore" queriedTable="main">
<condDesc original="//scs#humanInput"/>
<condDesc original="//scs#protoInput"/>

</dbCore>

Although not required by SCS, we recommend to also include a MAXREC
argument that lets people change the match limit in the SCS service (for the
web service, the database widget already provides this functionality). A usable
definition for it is given in the SCS RD in a STREAM with the id coreDescs,
together with the two condDescs above. So, here’s the recommended way to
build a bare-bone SCS service:

<dbCore id="xlcore" queriedTable="main">
<FEED source="//scs#coreDescs"/>

</dbCore>

SCS allows more query parameters; you can usually use condDesc’s buildFrom
attribute to directly make one from an input column. If you want to add a
larger number of them, you would use an active tag:

<dbCore id="xlcore" queriedTable="main">
<condDesc original="//scs#humanInput"/>
<condDesc original="//scs#protoInput"/>
<LOOP listItems="ipix bmag rmag jmag pmra pmde">

<events>
<condDesc buildFrom="\item"/>

</events>
</LOOP>

</dbCore>

Note that most current SCS clients are not good at discovering them, since for
SCS this requires going through the registry. In TOPCAT, for example, users
would have to manually edit the cone search URL.

Service

To expose that core through a service, just allow the scs.xml renderer on it. As
the core is built, you can have a web-based form interface for free:

<service id="cone" allowed="scs.xml,form">
<meta name="title">Nice Catalog Cone Search</meta>
<meta name="shortName">NC Cone</meta>
<meta name="testQuery.ra">10</meta>
<meta name="testQuery.dec">10</meta>
<meta name="testQuery.sr">0.01</meta>
<dbCore id="xlcore" queriedTable="main">

50

<FEED source="//scs#coreDescs"/>
<LOOP listItems="ipix bmag rmag jmag pmra pmde">

<events>
<condDesc buildFrom="\item"/>

</events>
</LOOP>

</dbCore>
</service>

The meta information given is used when generating registration records. In
particular, you should make sure that a query with the given ra, dec, and sr
actually returns some data.

SIAP

DaCHS’ SIAP implemention right now assumes you are publishing FITS files
with WCS headers. Other arrangements are of course possible, but you’d have
to write an equivalent of the //siap#computePGS procDef yourself.

Quick Start

Check out a sample resource directory:

svn co http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/emi
cd emi
mkdir data

Now fetch some files to populate the data directory so you have something to
import:

cd data
SRCURL=http://dc.g-vo.org/emi/q/s/siap.xml
curl -s $SRCURL"?POS=163.3,57.8&SIZE=20,20&MAXREC=5&weighting=uniform" \

| tr ’<TD>’ ’\n’ \
| grep "^http://" \
| sed -e ’s/<[^>]*>//g’ \
| xargs -n1 curl -sO

(no, this is not in general the way to operate SIAP services; use a proper client
for real work, and we didn’t show you this).

Run the import:

cd ..
gavo imp q

51

Now start the server as necessary (see above), and start TOPCAT and Aladin.
In TOPCAT, open VO/SIA Query, enter your new service’s access URL (it’s
http://localhost:8080/emi/q/s/siap.xml unless you did something cunning and
should know better yourself) under "SIA URL" pretty far down in the dialog.

Then have "Lockman Hole" as Object Name and resolve it, or manually en-
ter 161.25 and 58.0 as RA and Dec, respectively, and have 2 as Angular Size.
Send off the request. You’ll get back a table that you can send to Aladin
(Interop/Send to/Aladin), which will respond by presenting a load dialog. Dou-
bleclick and load as you like (yes, the images look a bit like static noise; that’s all
right here; but do combine these images with, say, DSS colored optical imagery
and marvel at the wonders of modern VLBI interferometry).

Indicentally, we made the detour through TOPCAT since there’s no nice UI to
query non-registred SIAP services in Aladin.

Tables

SIAP-capable tables should mix in //siap#pgs (the older //siap#bbox is depre-
cated; you could still use it if for some reason you have no pgSphere). This
mixin provides all the columns necessary for valid SIAP responses.

So, in the simplest case, a table that’s going to be published through SIAP
would look like this:

<table id="images" onDisk="True" mixin="//siap#pgs"/>

(of course, you can add more columns if you need them, and you might need
metadata and all that, but this is all it really takes).

In the case of the Lockman Hole RD, things are a bit more verbose:

<table id="main" onDisk="True">
<mixin>//siap#pgs</mixin>
<mixin

calibLevel="3"
collectionName="’VLBA LH sources’"
facilityName="’VLBA’"
oUCD="’phot.flux.density;em:radio.750-1500MHz;phys.polarisation.Stokes.I’"
polStates="’/I/’"
targetName="object"
tResolution="5000000"
targetClass="’AGN’"

>//obscore#publishSIAP</mixin>

<column name="object" type="text"
ucd="meta.id"

52

http://aladin.u-strasbg.fr/aladin.gml

tablehead="Object"
description="Source name as in

2009MNRAS.397..281I (VizieR J/MNRAS/397/281)"
verbLevel="1"/>

<column name="obsra"
ucd="pos.eq.ra" unit="deg"
description="Antenna pointing, RA"
verbLevel="18"/>

<column name="obsdec"
ucd="pos.eq.dec" unit="deg"
description="Antenna pointing, Dec"
verbLevel="18"/>

<column name="weighting" type="text"
ucd="meta.code"
description="Natural or uniform, according to weighting method."
verbLevel="18">
<values><option>natural</option><option>uniform</option></values>

</column>
</table>

More on the obscore mixin below. otherwise, you see that additional, non-siap
columns are simply added as usual. Anything with a verbLevel lower or equal
20 will be included in standard SIAP replies.

To fill such tables, the normal //products#define rowfilter is necessary, and there
are two procDefs from //siap that come in handy:

<data id="import_main">
<sources recurse="True">

<pattern>data/*.fits</pattern>
</sources>
<fitsProdGrammar qnd="True">

<maxHeaderBlocks>80</maxHeaderBlocks>
<mapKeys>

<map key="object">OBJECT</map>
<map key="obsdec">OBSDEC</map>
<map key="obsra">OBSRA</map>

</mapKeys>
<rowfilter procDef="//products#define">

<bind key="table">"emi.main"</bind>
</rowfilter>

</fitsProdGrammar>

<make table="main" >
<rowmaker id="gen_rmk" idmaps="object, obsra, obsdec">

<apply procDef="//siap#computePGS"/>
<apply procDef="//siap#setMeta">

<bind name="bandpassLo">0.207</bind>
<bind name="bandpassHi">0.228</bind>
<bind name="bandpassId">"1.4 GHz"</bind>
<bind name="bandpassRefval">0.214</bind>
<bind name="bandpassUnit">"m"</bind>

53

<!-- since the images are fairly complex mosaics, there’s no way we
can have sensible dates; this one here "plays a special role
in the calibration" (Middelberg) -->
<bind name="dateObs"

>dateTimeToMJD(datetime.datetime(2010, 7, 4))</bind>
<bind name="instrument">@INSTRUME</bind>
<bind name="title">"VLBA 1.4 GHz "+@object</bind>

</apply>

<apply name="fixObjectName">
<setup>

<code>
import csv
with open(rd.getAbsPath(

"res/namemap.csv")) as f:
nameMap = dict(csv.reader(f))

</code>
</setup>
<code>

@object = nameMap[@object]
</code>

</apply>

<map key="weighting">\inputRelativePath.split("_")[-1][:-5]</map>
</rowmaker>

</make>
</data>

This does, step by step:

• The sources element is as always – with image collections, the recurse
attribute usually comes in particularly handy.

• When ingesting images, you will (at least for a while, still) almost always
read from FITS images, i.e., FITS primary headers. A fitsProdGrammar
delivers the key-value-pairs from a header as a rawdict.

• The qnd attribute of the grammar is recommended. It makes some (weak)
assumptions to yield significant speedups with large images, just so long
as you can make do with the primary header.

• The fitsProdGrammar will map keys with hyphens to names with under-
scores, which allows for smoother action with them in rowmakers. The
mapKey‘ element can produce additional mappings; in this case, we abuse
it a bit to let us have idmaps (rather than simplemaps) in the rowmaker.
And, actually, to illustrate the feature, as this data does not need that
facility, really.

• The grammar further needs a rowfilter. The products#define rowfilter lets
you add keys on owners and embargo in case you want password protection

54

ref.html#products-define

for images, but most importantly it defines what table the data is destined
for. This is crucial information, and if you ever get it wrong, you need to
manually connect to the database and issue a command like DELETE FROM
products WHERE sourcetable=’<your wrong table>’. So, always bind table.
Make sure to include the quotes, this is supposed to be a valid python
expression yielding a string.

• You then need to define a rowmaker that must apply two procs. For
one, you need //siap#computePGS (if you mixed in //siap#pgsSIAP). No
bindings are required here.

• The second proc application required is //siap#setMeta . Try to give all
its keys somewhat sensible values, you will make your users’ lives much
easier.

• Typically, many values coming in the FITS headers will be messy and
fouled up. You’ll spend some quality time fixing these values in the typical
case. Here, we translate somewhat broken object names using a simple
mapping file that was provided by the author. In other circumstances
there’s the procs#mapValue procApp helping you.

• As is usual in procApps, you can access the embedding RD as rd. Here,
we use that to let DaCHS find the input file independently of where the
program was started.

Warning: Do not use idmaps="*" with SIAP, since the auto-generated map-
pings will clobber the work of the xSIAP procs.

Cores

There are two cores you may want for SIAP services:

• dbCore, to which you add the necessary condDescs manually as below,
for "normal" SIAP services.

• siapCutoutCore, which speaks SIAP but returns cutouts rather than full
images; the size of these cutouts is determined by the SIZE argument
(i.e., the region of interest).

To furnish these cores with the parameters required by the standard, use the
//siap#protoInput condDesc. If you want to re-use the core for a form-based
service, use the //siap#humanInput condDesc as well. Both are written in a
way that they’ll sense if they run under a SIAP renderer or not.

So, a basic core with a couple of additional fields would look like this:

55

ref.html#siap-computepgs
ref.html#siap-setmeta
ref.html#procs-mapvalue
http://docs.g-vo.org/DaCHS/ref.html#element-dbcore
ref.html#element-siapcutoutcore

<dbCore id="query_images" queriedTable="main">
<condDesc original="//siap#protoInput"/>
<condDesc original="//siap#humanInput"/>
<condDesc buildFrom="dateObs"/>
<condDesc buildFrom="bandpassId" />
<condDesc>

<inputKey name="object" type="text"
tablehead="Target Object"
description="Object being observed, Simbad-resolvable form"
ucd="meta.name" verbLevel="5" required="True">
<values fromdb="object FROM lensunion.main"/>

</inputKey>
</condDesc>

</dbCore>

Service

If you wrote the core to work for both SIAP and form as described above, there’s
little more to say except you’ll want to use the siap.xml renderer, and you need
some additional metadata for VO registration. The latter is described in the
siap.xml reference.

With this, the service definition would look like this:

<service id="im" allowed="form,siap.xml" core="query_image">
<meta name="shortName">sample images</meta>
<meta name="title">Sample Image Archive</meta>
<meta name="sia.type">Pointed</meta>

<meta name="testQuery.pos.ra">230.444</meta>
<meta name="testQuery.pos.dec">52.929</meta>
<meta name="testQuery.size.ra">0.1</meta>
<meta name="testQuery.size.dec">0.1</meta>

<publish render="siap.xml" sets="ivo_managed"/>
<publish render="form" sets="local,ivo_managed"/>

</service>

(where again you can just write the above core inline rather than referencing it;
that’s the style we usually recommend).

SSAP

Tables

SSAP tables come in essentially two flavours: they can be "homogeneous"
data collections, i.e., tables for which every data set was generated by the

56

ref.html#the-siap-xml-renderer

same instrument, code, or similar. Those mix in //ssap#hcd. Alternatively, the
datasets can come from different sources, in which case the table would have to
mix in //ssap#mixc. The following text mainly talks about hcd, but mixc isn’t
much different from an operator point of view.

This mixin has lots of parameters that define the instrument; see the SSAP
HCD mixin in the ref doc.

For example, you could say:

<table id="data" onDisk="true">
<mixin

instrument="HLT Coude"
fluxCalibration="RELATIVE"

>//ssap#hcd</mixin>
</table>

Note that despite their name, the timeSI, fluxSI, and spectralSI items in the
mixin do not contain actual unit strings. Instead, they are intended to contain
conversion factors in a custom syntax called "Osuna-Salgado convention". We
recommend to not set these fields and instead provide useful VOUnit-compliant
units where appropriate.

To fill such a table, it is recommended to use the products#define rowfilter and
the ssap#setMeta rowmaker apply. This could look like this:

<data id="content">

<fitsProdGrammar>
<rowfilter procDef="//products#define">

<bind name="table">"\schema.data"</bind>
</rowfilter>

</fitsProdGrammar>

<make table="data">
<rowmaker idmaps="ssa_*">

<apply procDef="//ssap#setMeta">
<bind name="dstitle">@FILENAME</bind>
<bind name="pubDID">"ivo://org.gavo.dc/ccd700/q#"+@FILENAME</bind>

</apply>
</rowmaker>

</make>
</data>

Caution: In the ssa table, we force the spectral axis to be a wavelength in meters.
You must convert all values manually if necessary. For the spectra themselves
you could use different units, but in our experience that’s more confusing than
helpful.

57

./ref.html#the-ssap-hcd-mixin
./ref.html#the-ssap-hcd-mixin
ref.html#products-define
ref.html#ssap-setmeta

In contrast to images where delivering FITS is likely all you need, there’s a
plethora of formats spectra are delivered in. To help a bit, you should make
sure one of the formats you offer are VOTables conforming to the spectral data
model (see Making SDM Tables in the reference documentation). If you want
to deliver the "native" format as well, you’ll have to have two rows for each
spectrum. The standard way to achieve that is through a rowmaker in the
grammar importing the spectra, like this:

<rowfilter name="generateFormatLinks">
<code>

baseAccref = os.path.splitext(row["prodtblPath"])[0]
row["prodtblAccref"] = baseAccref+".txt"
row["prodtblMime"] = "text/plain"
this is the file as delivered from upstream
yield row
row["prodtblAccref"] = baseAccref+".vot"
row["prodtblPath"] = "dcc://\rdIdDotted/mksdm?"+baseAccref+".txt"
row["prodtblMime"] = "application/x-votable+xml"
this is our processed SDM VOTable
yield row

</code>
</rowfilter>

SSAP’s FORMAT parameter lets clients select what they want. The way the
default FORMAT argument works, only application/x-votable+xml records are
considered compliant.

FITS files with spectra are a nasty chapter. Most of the FITS spectra out there
currently are basically 1D images. Use an image/fits MIME type for those;
application/fits is reserved for FITS binary tables conforming to the spectral
data model; chances are you’ll have to build those yourself.

Cores

Use the ssapCore for SSAP services. You must manually feed in the condition
descriptors for the SSAP parameters. For homogeneous data collections, this
is:

<ssapCore queriedTable="newdata">
<FEED source="//ssap#hcd_condDescs"/>

</ssapCore>

The hcd_condDescs includes condition descriptors for all mandatory and optional
parameters meaningful in the case of homogeneous data collections (i.e., ex-
cluding those that match against constant values).

58

Some of them may not be relevant to your service because your table never
has values for them. For example, theoretical spectra will typically not give
information on positions. The SSAP spec says that such a service should ignore
POS rather than returning the empty set.

If you think you must ignore certain conditions, you can use the PRUNE active
tag. This looks like this:

<ssapCore queriedTable="newdata">
<FEED source="//ssap#hcd_condDescs">

<PRUNE id="coneCond"/>
<PRUNE id="bandCond"/>

</FEED>
</ssapCore>

Do not do this just because you don’t have position information -- this would
mean that you would dump your complete archive for (typical) queries with a
position, and that is neither required by the spec (even if you might think so at
first reading) nor desirable.

Here is a table of parameter names and ids; you can always check them in
$gavo_installed/resources/inputs/__system__/ssap.rd.

Parameter
name

condDesc
id

POS, SIZE coneCond
BAND bandCond
TIME timeCond

For APERTURE, SNR, REDSHIFT, TARGETNAME, TARGETCLASS, PUB-
DID, CREATORDID, and MTIME, the condDesc id simply is <keyname>_cond,
e.g., APERTURE_cond.

To have custom parameters, simply add condDesc elements as usual:

<ssapCore queriedTable="newdata">
<FEED source="//ssap#hcd_condDescs"/>
<condDesc buildFrom="t_eff"/>

</ssapCore>

For SSAP cores, buildFrom will enable "PQL"-like query syntax such that users
can post arguments like 20000/30000,35000 to t_eff.

59

Service

To expose SSAP services, use the ssap.xml renderer. The metadata keys re-
quired for registration of these are documented in the reference manual. A
complete declaration of a published SSAP service would then look like this:

<service id="ssa" allowed="form,ssap.xml">
<meta name="shortName">mydata SSAP</meta>
<meta name="ssap.dataSource">theory</meta>
<meta name="ssap.creationType">archival</meta>
<meta name="ssap.testQuery">MAXREC=1</meta>

<publish render="ssap.xml" sets="ivo_managed"/>

<ssapCore queriedTable="data">
<FEED source="//ssap#hcd_condDescs"/>
<condDesc buildFrom="t_eff"/>
<condDesc buildFrom="log_g"/>

</ssapCore>
</service>

This service will expose all standard SSAP query parameters, and additionally
condDescs built from the t_eff and log_g columns in the source table (see
above).

Incidentally, in web versions of such services, you may want to have specview-
based "quick-view" links based on the run system rd that exposes the specview
template. Here’s an example of an outputTable (that would reside in the service
element):

<outputTable>
<outputField original="accref">

<formatter><![CDATA[
res[T.a(href=makeProductLink(data))[

"[Spectrum as VOTable]"]]
res[" ", T.a(href=base.makeAbsoluteURL(

"__system__/run/specview/fixed?source=%s%%3fdm=sed"%
urllib.quote(makeProductLink(data))))["[in VOSpec]"]]

return res
]]></formatter>

</outputField>
<outputField original="ssa_specstart" displayHint="displayUnit=Å"/>
<outputField original="ssa_specend" displayHint="displayUnit=Å"/>

</outputTable>

Some less cody approach would be welcome, but we’d need to collect some
experience what people expect there. Also note that specview is (or possibly
was, when you’re reading this) very picky in what it accepts as VOTables; in
the example, the dm=sed parameter is used to instruct DaCHS’ SDM-making
machinery to come up with a table palatable by current specviews.

60

./ref.html#the-ssap-xml-renderer

ObsTAP

ObsTAP is basically a single table, ivoa.ObsCore. In DaCHS, this is a view
generated from input tables. To include the products within a table, you must
use one of the mixins from the //obscore RD and fill out some of the mixin’s
parameters. There is some documentation on what to put where in the mixin
documentation, but frankly, as a publisher, you should have at least passing
knowledge of the obscore data model as laid down in Tody et al (2011).

In the simplest case, a SIAP table, you could get by simply adding:

mixin="//obscore#publishSIAP"

to the table definition’s start tag. You do not have to re-import a table to
publish it to obscore after the fact – gavo imp -m <rd id> && gavo imp //obscore
create will include an existing table to the obscore view.

Even for SIAP, you will usually want to add metadata not contained in DaCHS’
SIAP meta. To do this, add a mixin element to the table definition’s body:

<mixin
sResolution="0.5"
calibLevel="2"
>//obscore#publishSIAP</mixin>

To find out what parameters the mixin takes, see //obscore#publishSIAP in
the reference documentation.

On a table import, the obscore table will automatically be recreated to include
the data. If you retrofit ObsCore support to large tables, you can avoid hav-
ing to re-import everything by adding the mixin clause and then updating the
metadata. In that case, you must manually remake the obscore table:

gavo imp -m path/to/my/rd
gavo imp //obscore create

For SSAP tables, there is an //obscore#publishSSAPHCD mixin that works like its
SIAP cousin (see the reference documentation of details).

You can also have "pure" Obscore tables which do not build on protocol mixins.
A live example is the cubes table in the califa/q2 RD within the GAVO data
center. Here’s a brief explanation of how this works.

For the non-constant parts of your data, re-use the metadata given in the global
obscore table – to make that convenient, tell DaCHS to resolve original refer-
ences in there:

61

http://www.ivoa.net/Documents/ObsCore/index.html
./ref.html#the-obscore-publishsiap-mixin
http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/califa/q2.rd

<table id="cubes" onDisk="True" namePath="//obscore#ObsCore">

adql="True" is absent here as the obscore mixin set it. It wouldn’t hurt, though.

You will almost always want to have DaCHS manage your products. This
works even when all your files are external (i.e., you’re entering http URLs in
accessURL), so it’s a good idea to always mix in products:

<mixin>//products#table</mixin>

Then, you mix in //obscore#publish, which is like the protocol-specific mixins
except it doesn’t pre-set parameters based on what’s already in protocol-specific
tables:

<mixin
accessURL="dlurl"
size="10"
mime="’application/x-votable+xml;content=datalink’"
calibLevel="3"
collectionName="’CALIFA’"
coverage="s_region"
dec="s_dec"
emMax="7e-7"
emMin="3.7e-7"
emResPower="4000/red_disp_mean"
expTime="t_exptime"
facilityName="’Calar Alto’"
fov="0.01"
instrumentName="’PMAS/PPAK at 3.5m Calar Alto’"
oUCD="’phot.flux;em.opt’"
productType="’cube’"
ra="s_ra"
sResolution="0.0002778"
title="obs_title"
tMax="t_min"
tMin="t_max"
targetClass="’Galaxy’"
targetName="target_name"

>//obscore#publish</mixin>

Essentially, what’s constant is given in literals, what’s variable is given as a
column reference. It is a bit unfortunate that you have to enter quite a few
identity mappings in here, so we might provide a mixin presetting those if this
turns out to be a common use case. Tell us if you’re annoyed.

You can then add your custom columns (which might be useful if people directly
query your table). The central part is copying over obscore columns that are
not constant for your data collection. For califa, this looks like this:

62

<LOOP listItems="obs_id obs_title obs_publisher_did
target_name t_exptime t_min t_max s_region
t_exptime">
<events>

<column original="\item"/>
</events>

</LOOP>

– you’ll obviously have to adapt the listItems. To see what column names are
available, see the obscore table description.

That’s about it for defining the table. To fill the table, just have a normal
rowmaker; since the table contains products, don’t forget the //products#define
rowfilter in the grammar.

Publishing DaCHS-managed tables via TAP

In the simplest form, all you need to do to publish a table through the TAP
endpoint is to add an adql="True" attribute to the table definition and update
the metadata (by saying gavo imp -m <rd>).

You should, however, take particular care that there’s a useful description of
the table, usually as a direct meta on the table. Keep in mind that people will
stumble across the table in some sort of registry and need to be able to figure
out whether the table contains useful data by that description and the column
metadata alone.

The TAP endpoint only exposes rather limited metadata. At least when there is
no published service on the table, you may want to just publish the data to the
registry, too. This leads to a much richer set of metadata, increasing people’s
chances to able to locate the data.

To publish a nonservice (usually a table definition, but you can register data
descriptors containing multiple tables, too), use the register Element . For a
simple table, just wringing <register/> is enough, since the set name defaults to
ivo_managed and ADQL-accessible tables are automatically related to the TAP
services.

When register is the child of a data item, you need to manually declare that
child tables are TAP-accessible, like this:

<data id="collection" auto="false">
<register services="__system__/tap#run"/>
<make table="part1"/>
<make table="part3"/>

</data>

63

http://dc.g-vo.org/__system__/dc_tables/show/tableinfo/ivoa.ObsCore
./ref.html#element-register

When publishing "non-obvious" tables to TAP, it’s a good idea to add one or
more TAP examples for it. See Writing Examples

Publishing existing tables via TAP

If you already have a database table and now want to use DaCHS to publish it
via TAP, just write an RD as described above, except that the data element is
trivial. Here’s an example of how that could look like:

<resource schema="mydata">
<meta name="title">My great table</meta>
<meta name="creationDate">... (more metadata)

<table id="values" onDisk="True" adql="True">
<column name="id" type="bigint" unit="" ucd="meta.id;meta.main">

<description>id of object covered here</description></column>
</table>

<data id="import">
<make table="values"/>

</data>
</resource>

Within the data element you need one make each for each table you want
in ADQL; it would cause the tables to be created on a plain gavo imp, in the
present context, it just says something like "put the table metadata into DaCHS’
internal catalogs".

After that, say gavo imp -m <rd-id>; make sure you don’t forget the -m, because
without it, gavo imp will drop the existing tables if it can, i.e., if gavoadmin
has write access to the schema in question, and it should have that for reasons
explained in the next paragraph.

This adds the metadata you’ve given to all kinds of administrative tables DaCHS
keeps but does not touch the data. It will also try to fix the permissions of the
table such that DaCHS’s untrusted user can read it. To let DaCHS manage the
permissions, in psql say (assuming standard profiles):

GRANT ALL PRIVILEGES ON SCHEMA <your schema> TO gavoadmin
WITH GRANT OPTION;

GRANT SELECT ON <your schema>.<your table> TO gavoadmin
WITH GRANT OPTION;

If you have local users accessing the table, you should declare them in either the
allRoles or readRoles attributes to the table definiton. Maybe even adapting the

64

profiles in GAVOROOT/etc to match your existing infrastructure could make
sense.

Also do not forget that people should have some way to locate your data collec-
tion (i.e., the table(s) that you are exposing). If you have sufficient metadata
defined – basically as for services –, you can register your data collection. To do
this, just add an empty <register/> element to either a table definition or, more
convenient in multi-table setups, a data element for your data collection. The
defaults for register are publication to the VO and, for ADQL-exposed tables,
serviced by the TAP service, which is about what you want in this situation.

Here’s an example for the case of a multi-table publication:

<data id="collection" auto="false">
<register services="__system__/tap#run"/>
<make table="part1"/>
<make table="part3"/>

</data>

Don’t forget that you need to execute:

gavo pub the/rdid

to make DaCHS actually publish the table.

EPN-TAP

EPN-TAP will be a standard for publishing planetary data via TAP; it is still
somewhat in development, but we will try to keep DaCHS’ interface as stable
as reasonable while EPN-TAP evolves. If you want to publish data via EPN-
TAP, you will probably want to have a quick look at the EPN-TAP proposed
specification (check if there are newer ones).

Data in planetary sciences often comes in "PDS format", which superficially
resembles FITS but is quite a bit more sophisticated. Unfortunately, python
support for PDS is underwhelming. At least there is PyPDS, which needs to be
installed for DaCHS’ pdsGrammar to work.

Quick Start

Install PyPDS if you don’t have it anyway:

65

http://voparis-europlanet.obspm.fr/docs/EPN_TAP_v_0.37.pdf
http://voparis-europlanet.obspm.fr/docs/EPN_TAP_v_0.37.pdf
https://github.com/RyanBalfanz/PyPDS

curl -LO https://github.com/RyanBalfanz/PyPDS/archive/master.zip
unzip master.zip
cd PyPDS
python setup.py build
sudo python setup.py install

Get the sample data:

cd ‘gavo config inputsDir‘
curl -O http://docs.g-vo.org/epntap-example.tar.gz
tar -xvzf epntap-example.tar.gz
cd lutetia

Import it and build the previews from the PDS images:

gavo imp q
python bin/makePreview.py

Start the server as necessary. If you go to your local ADQL endpoint (something
like http://localhost:8080/__system__/adql/query/form) and execute queries
like:

SELECT * FROM lutetia.epn_core

there. Note how you get previews when hovering over the links in "Product
Key". This is, incidentally, a local extension to EPN-TAP, which is why futher
right there’s still the EPN-TAP access_reference column that also lets users
retrieve the data.

For access through a standard protocol, start TOPCAT, select "VO/TAP
Query", and at the bottom of the dialog enter http://localhost:8080/tap (or
whatever you configured) in "TAP URL". Hit "Enter Query", wait until the
table metadata is in and then again query something like:

SELECT * FROM lutetia.epn_core

Open the table and play with it. As a little visual treat, in TOPCAT’s main
window hit "Activation Action", and configure the preview_url column under
"View URL as Image". Then click on the table rows.

66

http://localhost:8080/__system__/adql/query/form
http://www.star.bris.ac.uk/~mbt/topcat/
http://localhost:8080/tap

Tables

In essence, EPN-TAP is just a set of columns. In DaCHS, these are in the
//epntap#table mixin. See the reference documentation of details. If your
data are images calibrated in some sort of spherical coordinates, you’ll likely
not have to change anything here. The mixin will already open the table for
ADQL querying, and to make that work, it is also declared onDisk. What’s not
declared is the table name, although it’s fixed at epn_core. Hence, the minimal
definition of an EPN-TAP table is:

<table id="epn_core" mixin="//epntap#table"//>

You can of course add further columns as necessary.

The real work is populating the table. Let’s first assume you have the data
products and use DaCHS to publish them. You will then use a grammar, and
as EPN-TAP deals with data products, the grammar must use the rowfilter
products#define rowfilter as discussed above in SIAP; the example shows how
this can be done while also providing for DaCHS-generated previews.

Filling the table from what comes from the grammar happens through and
idmaps="*" (which you want as the apply doesn’t actually map anything into
the results and there’s too many columns to make enumerating fun) and an
application of //epntap#populate . There’s little to add to the description
of the parameters. You will probably need to refer to the EPN-TAP proposed
specification now and then while filling things out. Note again that as always
when binding apply parameters, what you’re entering are python expressions, so
don’t forget the quotes where appropriate.

More complex operations should probably go to var declarations rather than the
bind bodies; again, see the example to see how.

If, on the other hand, you already have a database table containing the data
as well as a network service pushing out the data products, you can still use
the mixin and just create a view as described in Services Over Views . To
see what columns you can map, you should still consult the documentation
of epntap#populate (the parameter names are simply the column names). In
addition there are the columns from the product mixin (accref, mime, embargo,
and owner, which in this case probably should all be NULL). [TODO: example;
if you have data like this, talk to us so we can get an example here]

Service

EPN-TAP tables are queried through the data center’s TAP service. If you have
registred that, there is nothing else you need to do to access your data.

67

http://docs.g-vo.org/DaCHS/ref.html#the-epntap-table-mixin
ref.html#products-define
http://docs.g-vo.org/DaCHS/ref.html#epntap-populate
http://voparis-europlanet.obspm.fr/docs/EPN_TAP_v_0.37.pdf
http://voparis-europlanet.obspm.fr/docs/EPN_TAP_v_0.37.pdf

For registration, just add:

<publish/>

to your table body and run gavo pub <rd-id>.

Writing Examples
In the VO, there is a (as of this writing, fledgling) standard for giving examples
for service usage; the idea is to produce HTML that’s useful for human con-
sumption with additional, RDFa-based, markup to let clients figure out how to
fill their interface forms.

DaCHS lets you write such examples in ReStructuredText with some extra
markup that is turned into the machine-readable semantics.

TAP examples

The most prominent kind of examples are the one for TAP/ADQL. These reside
$GAVO_ROOT/etc/userconfig.rd. If you don’t have that file yet, create it with a
contents of:

<resource schema="__system">
</resource>

There can be quite a bit of configuraiton in there (gavo admin dumpDF
//userconfig shows you what DaCHS uses when you don’t override the items).
TAP examples are taken from a STREAM with id tapexamples. One such ex-
ample is already given in the userconfig.rd of the distribution. It will be ignored
if you define your own tapexamples, which is probably not a major loss.

In the stream, there are _example meta elements with a mandatory title at-
tribute and ReStructuredText contents. The built-in example looks like this:

<meta name="_example" title="tap_schema example">
To locate columns "by physics", as it were, use UCD in
:taptable:‘tap_schema.columns‘. For instance,
to find everything talking about the mid-infrared about 10µm, you
could write:

.. tapquery::

SELECT * FROM tap_schema.columns
WHERE description LIKE ’%em.IR.8-15um%’

</meta>

68

You must give a query in a block marked ..tapquery::. A typical client would
fill this into whatever its UI provides to write queries.

Optionally, you can give the client a hint what table the example pertains to
using the :taptable: interpreted text role. A client would typically use that to
restrict the display of the example to states in which it assumes the user wishes
to runs queries against that particular table.

DaCHS does not (yet) pick up changes to userconfig automatically. Hence,
after adding or changing examples, you have to run:

gavo serve exp % //tap

as the gavo user on the server. The somewhat funky-looking command line
consists of exp as the unique abbreviation of serve’s exipireRDs subcommand, %
as the identifier of userconfig (which needs manual reloading), and //tap (which
needs reloading as the rendered examples text is cached on it).

This will only work if you’ve set [web]adminpasswd in your /etc/gavo.rc; of course,
you could also restart the server.

To see your shiny new example(s), point your browser to <server
url>/tap/examples.

Datalink examples

DaCHS also contains provisional support for examples associated with datalink
services. Since client support for it is not in the pipeline and it’s not planned
for the standard either, it’s of questionable utility so far, but hopefully that’s
going to change.

To add an example to a datalink service, add an _example meta with a title
attribute directly to the service definition; for instance:

<service id="sdl" allowed="dlget,dlmeta">
<meta name="title">FEROS Datalink Service</meta>
<meta name="_example" title="Usage Example">

On published datasets like
:dl-id:‘ivo://org.gavo.dc/~?feros/q/f04031.bdf‘,
this service lets you to cutouts, translations into FITS binary
tables, ASCII, and possibly more, as well as simple recalibration.

</meta>

There is only one interpreted text role in there so far, dl-id. That’s a PubDID
the service will generate a datalink document for.

69

To see the example, point your browser to the service URL with the exam-
ples renderer. If the above fragment were in the RD flash/q, the URL would
thus work out to be <server url>/flash/q/sdl/examples. No manual reloading is
necessary here, changes will be picked up automatically.

Generic examples

The DALI standard defines a term generic-parameter which can be used to
annotate all kinds of services; this may come in particularly handy with the api
renderer.

To use it, you can write something like:

<meta name="_example" title="Dataset identifier">
Publisher dataset identifiers have a query part, but the
IVORN part still has to resolve:
:genparam:‘uri(ivo://org.gavo.dc/~?feros/data/f89411.vot)‘

</meta>

<meta name="_example" title="Standard identifier">
New-style standardIds use fragments to refer to standard keys within
vstd:Standard records, as in
:genparam:‘uri(ivo://org.gavo.dc/std/glots#tables-1.0)‘

</meta>

Note that such examples best sit in the service rather than top-level in the RD;
if the are direct children of the RD, they would appear in all services defined in
the RD.

DaCHS does not yet have support for the capability and continuation properties
defined by DALI. Ask if you need them.

Services Over Views
Sometimes a service should execute queries spanning several tables. One way
to go about this would be to use a fancyQueryCore.

However, since metadata generation is much more straightforward if a service
sits on top of something that’s actually pretty much a table, the better way
usually is to define a view executing the query. There are some subtleties with
this, though, so here’s a few words on how we recommend you go about that.

First, you’ll obviously define the tables involved:

<table onDisk="True" id="master" mixin="//scs#q3cindex"
primary="catno" adql="True">

<column name="catno" type="integer" required="True"

70

ref.html#element-fancyquerycore

ucd="meta.id;meta.main"
tablehead="id#"
description="Identification number in the ARIGFH master catalog"
verbLevel="1"/>

<column name="raj2000" type="double precision"
...

<table onDisk="True" id="identified" adql="True">
<column name="dist" type="double precision"

ucd="pos.angDistance" unit="deg"
tablehead="Offset"
description="Offset between master catalog position at catalog

epoch and equinox and the catalog position"
verbLevel="1" displayHint="displayUnit=mas,sf=1"/>

<column name="masterNo" type="integer" required="True"
...

A good approach might be to stuff the columns that will later show up in the
view into a STREAM and then replay that stream in both the table definitions
and the view definition, but since the RD we’re using as an example here worked
with original, this we use in this introduction; with STREAMs, sharing the
columns looks differently, the rest remains the same.

To save typing and make things a bit clearer, we use LOOPs for copying the
source columns. The view definition then looks somewhat like this:

<table onDisk="true" id="id" adql="True">
<meta name="description">

The stars from the gfh table having counterparts in the master
catalog, together with those counterparts.

</meta>
<column original="master.catno" name="masterNo"/>
<column original="master.component" name="compMaster"/>
<column original="master.raj2000"/>
<column original="master.dej2000"/>
<column original="master.pmra" name="pmraMaster"/>
<column original="master.pmde" name="pmdeMaster"/>
<column original="master.mv" name="mvMaster"/>
<column original="master.mb" name="mbMaster"/>

<LOOP listItems="catid catan dist iq">
<events>

<column original="identified.\item"/>
</events>

</LOOP>

<LOOP>
<codeItems>

for col in context.getById("gfh"):
yield {’item’: col.name}

</codeItems>

71

http://svn.ari.uni-heidelberg.de/svn/gavo/hdinputs/arigfh/q.rd

<events>
<column original="gfh.\item"/>

</events>
</LOOP>

<viewStatement>
CREATE VIEW \curtable AS (

SELECT \colNames FROM
(SELECT catno, raj2000, dej2000,

pmra AS pmraMaster,
pmde AS pmdeMaster,
mv AS mvMaster,
mb AS mbMaster,
component AS compMaster FROM \schema.master) AS m

JOIN
\schema.identified AS idf

ON (masterNo=catno)
JOIN \schema.gfh
USING (catid, catan))

</viewStatement>
</table>

As you can see, you can rename columns, and the second loop actually gets
column names from some table obtained via its id programmatically (only do
that if you’re sure you actually want to follow changes in source table structure;
the reason this is no one of the joined tables in the view has to do with the
specific dataset).

The viewStatement essentially is more or less arbitrary SQL. For robustness
against changes of table structure or schema or table name changes, however,
you should probably always start with:

CREATE VIEW \curtable AS (
SELECT \colNames FROM

– \\curtable will automatically adjust to whatever schema and table name is
given in the RD, and \\colNames gives all the names of the columns; using it,
you’ll get errors instead of silent failures if you add or remove columns in the
table definition but fail to adjust the view statement.

When making these tables, it pays to be a bit careful with the data elements,
as of course the view depends on the source tables. In particular, when you
re-import one of the source tables, the view will get dropped, and it is a good
idea to tell DaCHS to automatically re-make it. The recommended setup for
this looks like this:

<data id="import_master" recreateAfter="gfhtables">

72

...
<make table="master"...

<data id="import_identified" recreateAfter="gfhtables">
...
<make table="identified"...

<data id="gfhtables" auto="False">
<make table="id"/>

</data>

– essentially, you make the view in a non-auto data which gets imported every
time the source tables are re-made. Note that making the data for one source
table when the other doesn’t exist and will not be made in the same import
will lead to an error in the view creation. This is harmless for the import of
the table you imported, as data creation on recreateAfter happens in a separate
transaction.

The Registry Interface
Conceptually, the VO’s Registry is a set of resource records (i.e., descriptions of
services, data, or other entities) to let users locate resources relevant to them
(e.g., look for a service giving surface temperatures for OB stars). Whatever as
a resource record is called VO resource in the following to keep them apart from
whatever DaCHS resource descriptors describe; DaCHS RDs may descibe zero,
one, or multiple VO resources. We apologize for the confused nomenclature.

Physically, there are several services that keep and update this set and let people
query them (a "full registry"), e.g., the VAO registry, the ESAVO registry, or the
Astrogrid registry. All these should harvest each other and thus have identical
content (this is currently not always true).

To be part of the VO, you have to register your services. DaCHS makes this
fairly easy since it contains a publishing registry. This is again a service that
exposes a standard interface defined by the Open Archives Initiatives. There is a
renderer for the OAI harvesting protocol (OAI-PMH) called pubreg.xml that goes
together with registryCore. The service //services#registry with this renderer
has a vanity name of /oai.xml, which is you data center’s publishing registry
"endpoint". Full registries obtain the resource records present on your data
center for there.

Each VO resource has a unique identifier of the form:

ivo://<authority>/<stuff>

73

http://nvo.stsci.edu/vor10/index.aspx
http://esavo.esa.int/registry/index.jsp
http://www.openarchives.org/OAI/openarchivesprotocol.html

-- <stuff> is defined by the DaCHS software (to be <RD id>/<XML id of
registred object), whereas <authority> is a globally unique string. It is recom-
mended that you use your DNS name (or some appropriate part of it), which
will provide some uniqueness. The authority is declared in your gavorc (see
below). Details on VO identifiers can be found in IVOA Identifiers.

To claim an authority, you have to define who you -- as an organization -- are.
For this, DaCHS will create a resource record for your organization, too, where
"your organization" for DaCHS means whatever you give as creator.name in
defaultmeta (see below), which in general should be something like "My Institute
Data Center" rather than "My Institute". You can register "My Institute" as
well, if you want, but, the way things are written now, not as the entity running
managing the authority.

To make the VO aware of the existence of your data center, you will need
to tell the RofR (Registry of Registries) about your data center. Before you
can do this, you need to fill in quite a bit of information in your gavorc and
etc/defaultmeta.txt. The registry section in the operator’s guide has information
on what to do.

Restricting Access
Unfortunately, many data providers believe they want to have their data pro-
prietary for a while. Although they are almost certainly misguided in this, it is
hard to enlighten them, and so it’s preferable to have the data in a data center
with encumbered access rather than just on the providers’ machines.

Therefore, DaCHS has features to restrict access. Right now, this is very basic
and only provides what is known as "mild security", since it is based on HTTP
basic authentication over (usually) unencrypted lines. Given that we are not
dealing with sensitive information and snooping attacks on our connections
would be too much honor, we consider this enough. However, if you were
interested in contributing support for OAuth (say), we’d gladly help.

Note, however, that even HTTP basic authentication needs client support. Re-
cent versions of TOPCAT and Splat have that, others do not, and they simply
will not work with password-encumbered services. The situation with OAuth is
much worse.

User/Group management

The DaCHS user administration is fashioned a bit after the Unix user/group
model, except that there always is a group corresponding to a user. To create
a user and its group, use gavo admin adduser, like this:

gavo admin adduser kroisos notsecret "Remove when xy is public"

74

http://www.ivoa.net/Documents/REC/Identifiers/Identifiers-20070302.html
http://rofr.ivoa.net/
opguide.html#registry-matters
http://star-www.dur.ac.uk/~pdraper/splat/splat-vo

This command adds the user kroisos with the password notsecret and an optional
comment reminding future operators what to do with the identity. Note that
the password is stored in clear text in the database – which allows you to handle
"I forgot my password" requests gracefully; as long as we only do HTTP Basic
authentication, this doesn’t matter much since with it, the passwords traverse
the net in basically cleartext anyway. Again: all this is mild deterrence rather
than hard security.

To add existing users to groups, use gavo admin addtogroup, like this:

gavo admin addtogroup kroisos happy

– this adds kroisos to the happy group, and whoever can authenticate as kroisos
will be allowed access to any products or services retstricted to happy.

To discover further commands manipulating the user table, try:

gavo admin --help

Important: When you use authentication, please set the [web]realm configura-
tion item to some string reasonably characteristic for your site. Many systems
will store credentials by realm, and if different sites use the same realm, their
credentials will clobber each other. For details see the customization info in the
operators’ guide

Protecting Services

To password-protect entire services, use the limitTo child of the service element,
for instance:

<service id="scs" core="scsCore" allowed="form,scs.xml"
limitTo="happy">
...

</service>

Any access to the service will then require a client to authenticate as a user
belonging to the group given in limitTo. Only one such group can be given.
If you forsee the need for complex authorization schemes (rather than "there’s
one user on my system, and whoever’s authorized get its credentials"), it is
probably a good idea to create one user per service and add "real" users to the
corresponding group as necessary.

75

http://docs.g-vo.org/opguide.html#adapting-dachs-for-your-site
http://docs.g-vo.org/opguide.html#adapting-dachs-for-your-site

Embargoing Products

DaCHS’ products subsystem has the notion of owners and embargo periods,
which allows public services to deliver metadata on products during their pro-
prietarity period, while handing out the data itself only to authorized clients.
The embargo will automatically be lifted once the proprietarity period is over.

To make a "product" (e.g., spectrum or image) proprietary, in the prod-
ucts#define application building the rowdict, set the owner and embargo keys.
Owner is the name of a user created as described above, embargo must even-
tually become a timestamp, so you’ll in general come up with an ISO datetime
string or a python datetime.datetime instance. Here’s an example that says
images become public a year after the observation:

<fitsProdGrammar qnd="True">
<rowfilter procDef="//products#define">

<bind key="embargo">parseTimestamp(row["DATE_OBS"])+datetime.timedelta(
days=365)</bind>

<bind key="owner">"danish"</bind>
<bind key="table">"danish.data"</bind>

</rowfilter>
</fitsProdGrammar>

This is, in our view, an acceptable policy, but many observers want weird policies
(try to talk them out of it, since such behaviour is not nice, and it leads to a bad
user experience in the VO as a whole). You can get as fancy (or antisocial) as
you like using custom rowfilters, as in the following example that sets a default
embargo for the end of 2008, except for calibration frames and the observations
of two objects made in 2003:

<fitsProdGrammar qnd="True">
<rowfilter procDef="//products#define">

<setup><code>
<![CDATA[
def getEmbargo(row):

res = ’2008-12-31’
if (row.get("ARI_TYPE")!="SCIENCE" or

row["ARI_OBJC"]==’Q2237+0305’
or row["ARI_OBJC"]==’SBSS 1520+530’):

if ’2003-01-01’<=row[’DATE_OBS’]<=’2003-12-31’:
res = ’2005-12-31’

return res
]]>

</code></setup>
<bind key="owner">"maidanak"</bind>
<bind key="embargo">getEmbargo(row)</bind>
<bind key="table">"maidanak.rawframes"</bind>

</rowfilter>

76

ref.html#products-define
ref.html#products-define

An embargoed product can only be retrieved by the owner until the embargo
period is over. What you give as owner is a group name; if someone can au-
thenticate as the member of a group, she can access the data – see above for
details on how to create users and groups.

1This assumes you’re doing this on your local machine (which were recommend to get
started. If you do this on a remote machine, you will obviously have to replace the localhost in
the url with the machine’s host name. However, that still will not work as, by default, DaCHS
only binds to the loopback address. To change this, edit or create the file /etc/gavo.rc to
include at least:

[web]
bindAddress:

(yes, there’s nothing behind "bindAddress:"). Restart the server and you should see the
output.

2The pos.eq UCDs are hardcoded; this is because the standard simple cone search protocol
specifies that the coordinates passed in are ICRS, and hence other systems – galactic, say –
make little sense here. Also, the web form-variants of the protocols let users enter Simbad-
resolvable identifiers rather than positions. In sum, making these things generic for other
systems would be an unreasonable implementation effort.

If you want to allow queryies in other systems, just write the index statement inline, e.g.,
for galactic coordinates in the columns lambda, beta:

<index name="q3c_gal" cluster="True" columns="lambda,beta"
>q3c_ang2ipix(lambda,beta)</index>

A simple condDesc that searches using this index could be:
<condDesc>

<inputKey original="lambda" required="True"/>
<inputKey original="beta" required="True"/>
<inputKey name="sr" tablehead="Search Radius">

<values default="0.001"/>
</inputKey>
<phraseMaker>

yield q3c_radial_query(lambda, beta, %%(%s)s, "
"%%(%s)s, %%(%s)s)")%(
base.getSQLKey("lambda", inPars["lambda"], outPars),
base.getSQLKey("beta", inPars["beta"], outPars),
base.getSQLKey("sr", inPars["sr"], outPars))

</phraseMaker>
</condDesc>

77

	Contents
	Invoking DaCHS
	Building a Catalog Service
	Quick start
	The anatomy of the RD
	Defining Tables
	Parsing Input Data
	Mapping data
	Indices and Mixins
	Cores and Services

	Starting from Scratch
	Debugging
	General Hints
	Debugging Services
	Case Studies

	More on Grammars
	reGrammars
	fitsProdGrammar
	csvGrammar
	Source Fields

	More on Tables
	Notes
	STC

	More on Services
	Custom Templates
	Values Metadata

	More on Cores
	CondDescs
	Automatic and manual control
	Phrase makers

	More on Metadata
	Authors
	Coverage
	(Content) Type
	Copyright

	Active Tags
	LOOP

	Some Words on Times
	Publishing DAL Services
	SCS
	Tables
	Cores
	Service

	SIAP
	Quick Start
	Tables
	Cores
	Service

	SSAP
	Tables
	Cores
	Service

	ObsTAP
	Publishing DaCHS-managed tables via TAP
	Publishing existing tables via TAP
	EPN-TAP
	Quick Start
	Tables
	Service

	Writing Examples
	TAP examples
	Datalink examples
	Generic examples

	Services Over Views
	The Registry Interface
	Restricting Access
	User/Group management
	Protecting Services
	Embargoing Products

